{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "7aad0820-c1b8-4f10-aec4-bcf0056a67fc", "metadata": { "tags": [] }, "outputs": [], "source": [ "import matplotlib.pyplot as plt \n", "from IPython.display import display, HTML\n", "\n", "def recherche_front_montant(t, E):\n", " for i in range(len(E)-1):\n", " if (int(E[i+1]) == 1 ) and (int(E[i]) == 0 ):\n", " m_t = (t[i] + t[i+1]) / 2\n", " return m_t\n", " return None\n", "\n", "def recherche_front_descendant(t, E):\n", " for i in range(len(E)-1):\n", " if (int(E[i+1]) == 0 ) and (int(E[i]) == 1 ):\n", " m_t = (t[i] + t[i+1]) / 2\n", " return m_t\n", " return None" ] }, { "cell_type": "markdown", "id": "110461b9-5c53-4870-a8e6-7569c1caf7d4", "metadata": {}, "source": [ "## Mesures temporelles - Durée de parcours d'une onde ultrasonore\n", "\n", "Lorsque l'utilisateur clique sur le bouton `Mesure` le programme :\n", " - envoie la commande `mesure` à la carte _Arduino_,\n", " - reçoit des données sur la liaison série et les affiche sous forme de graphe $E=f(t)$." ] }, { "cell_type": "code", "execution_count": 1, "id": "169afeb4-ad18-4700-9ae5-cebab85262ee", "metadata": { "tags": [] }, "outputs": [ { "data": { "text/html": [ "\n", "\t\n", "\t\n", "\t\n", "\t \n", "\t \n", "\t \n", "\t\n", "\t\n", "\t\n", "\t\n", "\t
\n", "\t
\n", "\t \n", "\t
\n", "\t
\n", "\t
\n", "\t

\n", "\t \n", "\t\n", "\t\n", "\t\n", "\n", "\t" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from web_sciences import WebSciences\n", "\n", "my_init = '''\n", "mode = \"temporel\";\n", "var commandes = [{texte_bouton:\"Mesure\", arduino:\"mesure\"}];\n", "series = [{grandeur: \"E\", unite: \"\"}];\n", "titre_graphe = \"Célérité des ultrasons dans l'air\";\n", "axes = [{grandeur: \"Δt\", unite: \"µs\"}, {grandeur: \"E\", unite: \"sans unité\"}];\n", "'''\n", "\n", "interface = WebSciences(my_init)\n", "interface.affiche()" ] }, { "cell_type": "markdown", "id": "0ea3fcca-35dd-4456-8888-ad74f5da812f", "metadata": {}, "source": [ "## Affichage du graphique $E = f(t)$" ] }, { "cell_type": "code", "execution_count": 1, "id": "84cc755b-b548-4283-ad9d-6e7c0c4723c3", "metadata": { "tags": [] }, "outputs": [], "source": [ "# coller vos données ici\n", "\n", "t = [4, 40, 60, 88, 112, 140, 160, 184, 216, 236, 264, 284, 316, 336, 364, \n", "384, 412, 440, 460, 488, 512, 540, 560, 588, 612, 636, 664, 684, \n", "716, 736, 764, 784, 816, 836, 864, 884, 912, 940, 960, 988, 1016, 1036, \n", "1064, 1084, 1116, 1136, 1164, 1184, 1212, 1240, 1260, 1288, 1312, \n", "1340, 1360, 1388, 1412, 1440, 1460, 1484, 1516, 1536, 1564, 1584, 1616, \n", "1636, 1664, 1684, 1712, 1740, 1760, 1788, 1812, 1840, 1860, 1888, \n", "1912, 1936, 1964, 1984, 2012, 2040, 2060, 2088, 2112, 2140, 2160, 2188, \n", "2212, 2240, 2260, 2288, 2316, 2336, 2364, 2384, 2416, 2436, 2464, \n", "2484, 2512, 2540, 2560, 2588, 2612, 2640, 2660, 2688, 2712, 2740, 2760, \n", "2784, 2816, 2836, 2864, 2884, 2916, 2936, 2964, 2984, 3012, 3040, \n", "3060, 3088, 3116, 3136, 3164, 3184, 3216, 3236, 3264, 3284, 3312, 3340, \n", "3360, 3388, 3412, 3440, 3460, 3488, 3512, 3540, 3560, 3588, 3616, \n", "3636, 3664, 3684, 3716, 3736, 3764, 3784, 3812, 3840, 3860, 3888, 3912, \n", "3940, 3960, 3988, 4012, 4036, 4064, 4084, 4116, 4140, 4160, 4188, \n", "4212, 4240, 4260, 4288, 4312, 4340, 4360, 4388, 4416, 4436, 4464, 4484, \n", "4516, 4536, 4564, 4584, 4612, 4640, 4660, 4688, 4712, 4740, 4760, \n", "4788, 4812, 4840, 4860, 4888, 4916, 4936, 4964, 4984]\n", "E = [0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, \n", "0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 1.00, 1.00, 1.00, \n", "1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, \n", "1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, \n", "1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, \n", "1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, \n", "1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, \n", "1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, \n", "1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, \n", "1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, \n", "1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, \n", "1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 0.00, 0.00, 0.00, \n", "0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, \n", "0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, \n", "0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, \n", "0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, \n", "0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, \n", "0.00, 0.00, 0.00, 0.00, 0.00]" ] }, { "cell_type": "code", "execution_count": 2, "id": "cf056b5d-c8a0-4950-b3cd-b398c7c48215", "metadata": { "tags": [] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAikAAAGDCAYAAADu/IALAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAAAyh0lEQVR4nO3dfbxlZV3w/893HwZGnBFlwCl5RvABHxKbIG+txmdQUywfMPXO6o6e6K70Z2GZqT8rtfJOk35B2S9TE42ySDG09KSRIpiEAqIjIgyQA8PTDDADnP29/9hrz2wOe++zzpyzzt7Xms/79Tqvs/daa6917evMrP3d18P3isxEkiRp2nQmXQBJkqRhDFIkSdJUMkiRJElTySBFkiRNJYMUSZI0lQxSJEnSVDJIkZZJRLw+Ij4QEZ3q+ZERkRGxz7zjOhHxjxFx2gLne2VEfKrmtZ8aERdHxIGLKO9sRPyvuscv1aj6aJOVrtPqmhkRx+zB6y6PiI3LXyJp+RikSAuIiJ+IiEsiYntE3BgRn4yIp8075mTg+4HXZGZ3gVO+DfhMZp497qDM/FBmPmfgGkM/jCLiMOD3gOdn5i1139ekTeIDve0i4q8i4jV1js3Mx2XmbLMlkpamtd9opOUQEa8FzgB+HrgAuAc4CXgR8O/94zLzk8An65wzM3+zxnX3ycz7ap7vOuBH6hxbksXUgZaXda9pYUuKNEJEHAC8FfilzPz7zLwzM+/NzH/KzNdXx3Qi4oyI+FZEbI2Ij47qcomIAyLifVVrzPUR8baImKn2vSYiLoyI/xMRW4E3V9v+vdr/ueo0/1W16Ly82v6CiLg0Im6LiP+IiCeOeT/PjoivR8TtEfFeIObt/+mIuDIibo2ICyLiiGp7VOXaEhF3RMRXI+LxI65xTUQ8a+D5myPig0OO+13gh4D3Vu/nvdX2jIhfiohvAt+str07Iq6rrv3liPihgfOcULVy3RER342Idw3se2HVpXFb1Wrz2Hnl/H8i4rKqPj4SEaurfQdFxMer190SEZ/vd+Etpk4j4pER8Znq38XNEfGhiHjocpdhlJrXf9bA3+nciPhgRNwBvGYx15KaYpAijfYUYDXwsTHH/DJwCr2WjEcAtwJnjjj2r4D7gGOA44HnAIPdHScCVwPrgd8dfGFm/nD18Psyc01mfiQijgf+Evg5YB1wFnBeROw3/8IRcRDw98AbgYOAbwFPHdj/IuA3gR8DDgY+D3y42v0c4IeBRwEHAC8Dto6skRoy87eqa5xevZ/TB3afQq8ujqueXww8CTgQ+Bvgb/sf5sC7gXdn5kOARwIfrd7Po6ry/2r1fs4H/iki9h24zsvotYodBTyR3R/MrwM2V69bT69eHrB+yEJ1Si9g+X16/y4eCxwGvHneaZZUhvky8zWZ+VeLuP6gFwHnAg8FPrTQtaSVYJAijbYOuHmBZu+fB34rMzdn5k56HwIviQcOll0PPA/41apFZgvwf4BTBw67ITP/JDPvy8y7a5TvNOCszLwoM+cy8/3ATuAHhxz7PODyzDw3M+8F/hj473nv4/cz88rq/f4e8KSqNeVeYC3wGCCqY26sUb499fuZeUu/DjLzg5m5taqXPwL2Ax5dHXsvcExEHJSZ2zPzi9X2lwOfyMxPV+/3D4EHAf9j4DrvycwbqnE8/0QvEOqf83uBI6qWs8/n8EXOxtZpZm6qrr8zM28C3sUDu+WWWoaRal5/0Bcy8x8ys1vz35/UOIMUabStwEHzA455jgA+VjXL3wZcCczR+/Y7/7hVwI0Dx54FPHzgmOsWWb4jgNf1z1ed8zB635zne8Tg+asPvMHrHQG8e+A8t9D7Jn5IZn4GeC+9FqItEXF2RDxkkWVdjPvVQ9UlcmXVJXIbvdacg6rdP0Ovhefr0Zvd9IJq+yOA7/TPUQ1mvg44ZODUg0HaXcCa6vEfAJuAT0XE1RFxxohyjq3TiFgfEedEr2vvDuCDA+VerjKMVPP6gxb7709qnEGKNNoX6LVMnDLmmOuAkzPzoQM/qzPz+iHH7QQOGjjuIZn5uIFjFrsk+XXA78679v6Z+eEhx95IL4ABeuNMBp9X5/q5eed6UGb+B0Bmviczv59eF8yjgNePKNOdwP4Dz79nTPlHvd9d26vxJ79Or1vkYZn5UOB2qrEfmfnNzHwFvWDvHcC5EfFg4AZ6gdf89zv/7/LAi2duy8zXZebRwAuB10bEM4cculCd/l71Xp5QdUe9Cu4/DmgZyjDOYq+/2H9/UuMMUqQRMvN24E3AmRFxSkTsHxGrIuLkiHhnddifAb8buweZHlyN75h/rhuBTwF/FBEPid6A20dGxGJm5XwXOHrg+Z8DPx8RJ0bPgyPi+RGxdshrPwE8LiJ+rGoZ+t/cP4D4M+ANEfG46n0cEBEvrR7/QHWNVfSCkB3AqGnWlwKnVvW0AXjJIt7PMGvpjeO5CdgnIt4E7GrFiYhXRcTBVUvJbdXmLr2xKc+PiGdW5X4dvSDxPxa4Xn8w8jFV0HE7vZaxYe93oTpdC2wHbo+IQxgd2C2lDOPs8fWlaWGQIo1RjYF4Lb3BkTfRa3E4HfiH6pB3A+fRa5bfBnyR3qDPYf4nsC9wBb0BtufSG3dQ15uB91ddMi/LzEuAn6XXFXMrve6B14x4HzcDLwXeTq8b61jgwoH9H6PXEnFO1TXwNeDkavdD6AVEt9LrQtlKrztimN+mN4D1VuAt9Aa6jvJueuN3bo2I94w45gLgn4FvVNfewf27JU4CLo+I7dX5Ts3MuzPzKnotB38C3Az8KPCjmXnPmPL0HQv8C70P+C8Af5qZn51/0EJ1Su/9P5lekPEJeoNs66pVhgUs5frSVIhFjsWSJElaEbakSJKkqWSQIkmSppJBiiRJmkoGKZIkaSoZpEiSpKlU3CrIBx10UB555JGNnPvOO+/kwQ9+cCPn1v1Z1yvL+l5Z1vfKsa5XVhP1/eUvf/nmzDx42L7igpQjjzySSy65pJFzz87OsnHjxkbOrfuzrleW9b2yrO+VY12vrCbqOyK+M2qf3T2SJGkqGaRIkqSpZJAiSZKmUnFjUiRJ0v3de++9bN68mR07djR6nQMOOIArr7xyj167evVqDj30UFatWlX7NQYpkiQVbvPmzaxdu5YjjzyS3uLZzdi2bRtr1w5baH28zGTr1q1s3ryZo446qvbr7O6RJKlwO3bsYN26dY0GKEsREaxbt27RLT0GKZIktcC0Bih9e1I+u3skSdKSzczM8IQnPGHX81NPPZUzzjhjSec0SJEkaS+05Y4dnP7hr/Denzieh69dveTzPehBD+LSSy9desEGNNbdExF/GRFbIuJrI/ZHRLwnIjZFxGUR8eSmytJGW+7YwcvO+gJX3HA7LzvrC2zZtuMB2+rsG3dMf9spZ17Ii//0wrHHLPa6t+3s7lGZFnNME+97qXWyXOWvs2+wjLft6C5r+Zuo96Veo8l/r4s9pl/fS/27LbX8W7Y1O9NDZXvPv36Ti6+5hff8yzcnXZSRIjObOXHEDwPbgb/OzMcP2f884JeB5wEnAu/OzBMXOu+GDRvStPjwxo99lQ996VqOOXgNm27azitPOBzgftvq7Bt3TH/bBy+6FoBXnTj6mMVed+Oh+3DIIx6x6DIt5pgm3vdS62S5yl9n32AZr7/hBmY337ds5W+i3pd6jSb/vS72mH59L/XvttTyv/KEw3nbi3c3v7dRSfftJl155ZU89rGPBeAt/3Q5V9xwx8hjv3TNLQz76I+AE448cOhrjnvEQ/idH33c2Nk987t73vCGN/Dyl798ZDl3Xze+nJkbhp2zsSCluvCRwMdHBClnAbOZ+eHq+VXAxsy8cdw59/Yg5dFv/CQ77+tOuhiSCrLfPh2uetvJky5GI0q4b6+ExQQp99zX5dpb7uLWu+6hm9AJeNj++3L4gfuz7z7DO1jqBClr1qxh+/bttcvZNy5ImeSYlEOA6waeb662PSBIiYjTgNMA1q9fz+zsbCMF2r59e2PnXi7veNp+nHPVPXzpxjkMVSSNs6oD379+hlMfs+/U39v2VAn37ZVwwAEHsG3bNgBeu/HwBY9/6ye/yblfuZF99+lw71yXZz56Hb998rFjX7Nt2zbm5uZ2XWfUMePs2LFjUX+vIgbOZubZwNnQa0lpKmouJSK/+O6v8sUbr931vBPQrRrEAhhsGxu3b9wxg9vmG3bMYq67p2VazDFNvO9VM8G9c8N31qmT5Sp/3X1NlX8a/7ZN/nttstzD9i1X+TsB9yUcc/ghnPLc9nb5lHLfbtqVV165qCRrd+zs8soTj+AnTjicv/nStdy0bUet1y+UzG2hc6xevZrjjz++djknGaRcDxw28PzQapsWcPP2nTzxkAO47PrbedTD17Bu7b5svuVuAA47cH9u3r6Tm7bt5OC1+7Fuzeh9447pb7t5+06e8Zj1AHzm69/loDX7PeCYxV533Zp9+eYNt/Kg1asXVabFHNPE+z7r1Rv4uQ9cssd1slzlr7NvfhkfPNPlr0972rKUv4l6X+o1mvz3uifH3H333TzqkHVL/rvtSfnXrdmXS6+7nWMOXsMJR6/jJgfPaoizXr27d+VtpzxgRMYeufvuu3nSk5606/lJJ53E29/+9iWdc5JBynnA6RFxDr2Bs7cvNB5FPWe9egPv+vQ3uOz62/nUa39k0sXZI6V++/n8bzxj0kXYI7Ozsxz3iIcUW/7S9P59/+BErr1pyzae9a7P8cvPPJYf/b5HTKQM2jvNzc0t+zkbC1Ii4sPARuCgiNgM/A6wCiAz/ww4n97Mnk3AXcBPNVWWNup2k5nOdGcXlLTyOlVWz26DkyKkldJYkJKZr1hgfwK/1NT1266biTGKpPkMUtQmrt1TqG5O/zoNklberiDF6X9qAYOUQqUtKZKG6H93sSVl79Nk3rPlsCflM0gpVDeTGVtSJM3TH6s25Z9XWmarV69m69atUxuoZCZbt25l9erFrRFURJ4UPdBcd3ezriT19e8Lc1P6YaVmHHrooWzevJmbbrqp0evs2LFj0YFG3+rVqzn00EMX9RqDlEJ1MzFGkTRfx+6evdKqVas46qijGr/O7OzsopKxLZXdPYXKTDoOSpE0T+ya3TPhgkjLwCClUL1FoQxSJN1f/7vLtI5NkBbDIKVQvTwpBimS7q8/cLZrU4pawCClUCZzkzRM7Bo4O+GCSMvAIKVQXWf3SBrC7h61iUFKoWxJkTSMafHVJgYphTItvqRhOs7uUYsYpBSqm66CLOmBOtVdfc4oRS1gkFIou3skDdNvSXFMitrAIKVQ5kmRNIzdPWoTg5RCmRZf0jCmxVebGKQUKh2TImmIiCDClhS1g0FKoea6ZpyVNFwnwoyzagWDlEI5BVnSKJ2wu0ftYJBSqHR2j6QRIsLuHrWCQUqhnN0jaZROOAVZ7WCQUqhuJh2bUiQNMRNhd49awSClUL2Bs5MuhaRp1IlgrjvpUkhLZ5BSqLS7R9II4cBZtYRBSqFMiy9plE4nHJOiVjBIKVQv46xRiqQH6ji7Ry1hkFKobrc3OE6S5utEMGdLilrAIKVQvdk9ky6FpGnkFGS1hR9zheqNSbElRdID9dLiT7oU0tIZpBTKtPiSRjEtvtrCIKVQmcmMMYqkITodB86qHQxSCjVnd4+kETpmnFVLGKQUqtu1u0fScHb3qC0MUgplMjdJo5gnRW1hkFIo0+JLGsW0+GoLg5RCzWUyY1OKpCFmOkHXphS1gEFKoXpp8SddCknTyIGzaguDlELZ3SNplHBMilrCIKVQDpyVNIpp8dUWBimFMi2+pFGc3aO2MEgpVLfbyyopSfN1OsGcUYpawCClUHb3SBrFZG5qC4OUQtndI2mUTgTGKGoDg5RCuQqypFFsSVFbGKQUKjOZ8a8naQjzpKgt/Jgr1FzX7h5Jw3Ui6HYnXQpp6QxSCtU1mZukETodu3vUDgYphTItvqRR7O5RWxikFMq0+JJGMS2+2sIgpVBzXVdBljTcjLN71BKNBikRcVJEXBURmyLijCH7D4+Iz0bEVyLisoh4XpPlaRO7eySNYneP2qKxICUiZoAzgZOB44BXRMRx8w57I/DRzDweOBX406bK0zZ290gaJZzdo5ZosiXlBGBTZl6dmfcA5wAvmndMAg+pHh8A3NBgeVrFtPiSRjGZm9pinwbPfQhw3cDzzcCJ8455M/CpiPhl4MHAsxosT6uYFl/SKKbFV1s0GaTU8QrgrzLzjyLiKcAHIuLxmXm/hsqIOA04DWD9+vXMzs42Upjt27c3du7llJl0E679zneYnb1x0sXZI6XUdVtY3ytr0vW9desOtm3v7hV/80nX9d5mpeu7ySDleuCwgeeHVtsG/QxwEkBmfiEiVgMHAVsGD8rMs4GzATZs2JAbN25spMCzs7M0de7l1O0mXHA+Rx91FBs3Hjvp4uyRUuq6LazvlTXp+j73hv9k69wde8XffNJ1vbdZ6fpuckzKxcCxEXFUROxLb2DsefOOuRZ4JkBEPBZYDdzUYJlaod/X7JgUScPY3aO2aCxIycz7gNOBC4Ar6c3iuTwi3hoRL6wOex3wsxHxX8CHgddk+l9rIf0kTR2jFElDOHBWbdHomJTMPB84f962Nw08vgJ4apNlaKPdLSkGKZIeqNMxT4rawYyzBbK7R9I4roKstjBIKdCu7h5bUiQNYXeP2sIgpUD9m48xiqRhTIuvtjBIKVA/i4wtKZKGcRVktYVBSoHmqm9IroIsaZiZTpVPSSqcQUqBHDgraRy7e9QWBikF2j0mxShF0gN17O5RSxikFCid3SNpjHB2j1rCIKVAdvdIGse0+GoLg5QCzVXtuKbFlzTMTCd23SekkhmkFMjuHknj2N2jtjBIKZDdPZLGsbtHbWGQUiDT4ksax7T4aguDlALtakmxKUXSEDPmSVFLGKQUqJ9J0hhF0jD9tPhpoKLCGaQUyO4eSeP07w3GKCqdQUqBHDgraZz+vcEuH5XOIKVApsWXNE5/vJqpUlQ6g5QCdbu93zMGKZKG6Hf32JKi0hmkFGj37J4JF0TSVLK7R23hx1yB7O6RNM7ulpQJF0RaIoOUAjm7R9I4YUuKWsIgpUDp7B5JY+yagtydcEGkJTJIKVB/dVMHzkoaZqb6BjNnS4oKZ5BSoH53j2NSJA3jwFm1hUFKgezukTROOAVZLWGQUqBdA2eNUiQNYVp8tYVBSoF2p8U3SJH0QDPVnd2WFJXOIKVAc3b3SBqj390zZ6IUFc4gpUBpS4qkMezuUVsYpBSov3aPQYqkYZzdo7YwSCnQ7rT4Ey6IpKlkWny1hUFKgfpByoyDUiQN0Z/555gUlc4gpUCu3SNpnP73l7S7R4UzSClQ19k9ksawu0dtYZBSINPiSxrHgbNqC4OUApkWX9I4psVXWxikFGjXKshGKZKG6K+Q3k9XIJXKIKVADpyVNE7HtPhqCYOUApknRdI4dveoLQxSCmRafEnjOLtHbWGQUqD+jccxKZKGmdm1do9RispmkFKg/sBZG1IkDdP//mLGWZXOIKVAdvdIGifs7lFLGKQUyNk9ksYxLb7awiClQKbFlzROf4FBW1JUOoOUAvX7mTtGKZKG6LeyztmSosIZpBQo7e6RNIZr96gtDFIKZHePpHE6TkFWSxikFMiBs5LG6bh2j1rCIKVApsWXNE7Y3aOWqB2kRMSDI2JmMSePiJMi4qqI2BQRZ4w45mURcUVEXB4Rf7OY8++tuv1VkI1SJA0x03HtHrXDPqN2REQHOBV4JfADwE5gv4i4GfgEcFZmbhrz+hngTODZwGbg4og4LzOvGDjmWOANwFMz89aIePgyvKfWs7tH0jiu3aO2GNeS8lngkfSCiO/JzMMy8+HA04AvAu+IiFeNef0JwKbMvDoz7wHOAV4075ifBc7MzFsBMnPLHr6PvYrdPZLGcXaP2mJkSwrwrMy8d/7GzLwF+Dvg7yJi1ZjXHwJcN/B8M3DivGMeBRARFwIzwJsz85/nnygiTgNOA1i/fj2zs7NjLrvntm/f3ti5l9O3r7mHAP7t3/5t0kXZY6XUdVtY3ytr0vV9w/beiNmvXX4Fa275xsTKsRImXdd7m5Wu75FBymCAEhFPA47NzP8/Ig4G1mTmt4cFMXtw/WOBjcChwOci4gmZedu8spwNnA2wYcOG3Lhx4xIvO9zs7CxNnXs5XbLzKma+/a0iyjpKKXXdFtb3ypp0fX/75jvh32d57GMfy8YnHTKxcqyESdf13mal63tod09EPH7g8e8Av0Gv2wdgFfDBGue+Hjhs4Pmh1bZBm4HzMvPezPw28A16QYvGmMt0PIqkkVwFWW0xakzK4RHx9urxi4EXAncCZOYNwNoa574YODYijoqIfekNwj1v3jH/QK8VhYg4iF73z9WLKP9eqZvpeBRJIzlwVm0xtLsnM8+PiLnq6T2ZmRGR0JuKXOfEmXlfRJwOXEBvvMlfZublEfFW4JLMPK/a95yIuAKYA16fmVuX+J5aL9OZPZJGM0+K2mLcmJQLqocfjYizgIdGxM8CPw38RZ2TZ+b5wPnztr1p4HECr61+VFO3m6bElzSSafHVFuNm9wCQmX8YEc8G7gAeDbwpMz/deMk00lymKyBLGqmfzG3OtPgq3IJBSkS8IzN/A/j0kG2aALt7JI1jd4/aok5a/GcP2XbychdE9XXT7h5Jo9ndo7YYlxb/F4BfBI6OiMsGdq0FLmy6YBqt6xRkSWM4u0dtMa6752+ATwK/DwwuDrityjqrCekmhEGKpBFMi6+2GBekZGZeExG/NH9HRBxooDI53W4yU3v9akl7m86ugbMGKSrbQi0pLwC+DCQw+NU9gaMbLJfGsLtH0ji7x6RMuCDSEo3Lk/KC6vdRK1cc1dF1do+kMezuUVssOAUZICIOAY4YPD4zP9dUoTSeafEljePAWbVFrTwpwMuBfup66HX3GKRMSObuZE2SNN/uIMUoRWWr05JyCvDozNzZcFlU01zXMSmSRtvV3WNTigpXZ47I1cCqpgui+uzukTSO3T1qizotKXcBl0bEvwK7WlMy8383ViqNZVp8SeOYFl9tUSdIOa/60ZQwLb6kcSKCCNPiq3x1VkF+/0oURPU5JkXSQmYimDNIUeHqzO75Nr3ZPPeTmSZzmxDzpEhaSCfCMSkqXp3ung0Dj1cDLwUObKY4qiMz6ZgWX9IYEY5JUfkW/KjLzK0DP9dn5h8Dz2++aBrFtPiSFtKJMC2+ilenu+fJA0879FpWamWqVTNcBVnSQjphnhSVr06w8UcDj+8Dvg28rJniqI5uJjPGKJLG6HQcOKvy1Znd8/SVKIjqs7tH0kLs7lEbOPyyQN2us3skjddx4KxawCClQKbFl7SQ3hRkgxSVzSClQK6CLGkhnY55UlS+BYOUiHhpRKytHr8xIv5+3owfrbA5x6RIWoCze9QGdVpSfjszt0XE04BnAe8D/r9mi6Vx7O6RtBC7e9QGdYKUuer384GzM/MTwL7NFUkLMS2+pIWYFl9tUCdIuT4izgJeDpwfEfvVfJ0akq6CLGkBpsVXG9QJNl4GXAA8NzNvo7duz+ubLJTGm+umA2cljTXTCcekqHh11u65C/hH4M6IOBxYBXy96YJpNNPiS1qI3T1qgzpr9/wy8DvAd4FutTmBJzZYLo1hd4+khdjdozaos3bPrwCPzsytTRdG9ZgWX9JCTIuvNqgzJuU64PamC6L6utlL1CRJo8w4BVktUKcl5WpgNiI+Aezsb8zMdzVWKo3V7dqSImm8iN4ge6lkdYKUa6uffTE/ylToOiZF0gIcOKs2WDBIycy3rERBVJ/J3CQtpNPpDbKXSlZnds/BwK8DjwNW97dn5jMaLJfGMC2+pIWYFl9tUGfg7Ifo5UU5CngLcA1wcYNl0gIye4PiJGkUu3vUBnWClHWZ+T7g3sz8t8z8acBWlAmac+CspAV0zJOiFqgzcPbe6veNEfF84AZ6qfE1Id1MOq6eJGkMu3vUBnWClLdFxAHA64A/AR4C/FqjpdJYpsWXtJBOBN3uwsdJ06zO7J6PVw9vB57ebHFUh2nxJS3EtPhqgwU7DSLinRHxkIhYFRH/GhE3RcSrVqJwGm4u04Gzksaa6djdo/LVGdnwnMy8A3gBvZk9xwCvb7JQGq/bTbt7JI3l7B61QZ0gpd8l9HzgbzPTdXwmLE3mJmkBdveoDeoMnP14RHwduBv4hSq5245mi6VxTIsvaSG2pKgNFmxJycwzgP8BbMjMe4G7gBc1XTCN1s1ef7MkjTLTCdPiq3gjg5SIeFr/cWbekplz1eM7M/O/q8G0j1+JQur+5tIxKZLG67gKslpgXHfPj0fEO4F/Br4M3ERv7Z5j6E1FPoJe7hStMKcgS1pI2N2jFhgZpGTmr0XEgcCPAy8FvpfeuJQrgbMy899Xpoiaz1WQJS2kE66CrPKNHTibmbcAf179LFpEnAS8G5gB/iIz3z7iuB8HzgV+IDMv2ZNr7U0cOCtpIabFVxs0tgJMRMwAZwInA8cBr4iI44Yctxb4FeCipsrSJpnZm4JslCJpjE7H7h6Vr8ll6k4ANmXm1Zl5D3AOw2cF/b/AO3Bacy39m47dPZLG6a3dY5SistXJk7KnDgGuG3i+GThx8ICIeDJwWGZ+IiJGZrGNiNOA0wDWr1/P7Ozs8pcW2L59e2PnXi73VTeda675NrOz10+4NHuuhLpuE+t7ZU1Dfd+0ZQd33tWdeDmaNg11vTdZ6foeGaRExK9n5jurxy/NzL8d2Pd7mfmbS7lwRHSAdwGvWejYzDwbOBtgw4YNuXHjxqVceqTZ2VmaOvdy2XnfHHzqn3nk0UezceMxky7OHiuhrtvE+l5Z01Df//jdS7lh560TL0fTpqGu9yYrXd/juntOHXj8hnn7Tqpx7uuBwwaeH1pt61sLPB6YjYhrgB8EzouIDTXOvddKu3sk1WBafLXBuCAlRjwe9nyYi4FjI+KoiNiXXtBzXn9nZt6emQdl5pGZeSTwReCFzu4Zr5+caabJ0USSijfjmBS1wLiPuhzxeNjzB7448z7gdOACerlVPpqZl0fEWyPihYsuqYDd34xsSZE0jmv3qA3GDZz9voi4g16ryYOqx1TPV9c5eWaeD5w/b9ubRhy7sc4593b9m45p8SWN0+nY3aPyjcs4O7OSBVE9uaslZcIFkTTVTIuvNnBkQ2H6Nx1XQZY0zky4CrLKZ5BSmP7AWbt7JI3Tid6K6VLJDFIKY3ePpDrC2T1qAYOUwpgWX1IdnQhsSFHpDFIK07UlRVINHZO5qQUMUgpjnhRJdcy4CrJawCClMN1u77dBiqRxIsKBsyqeQUphdrWk+JeTNEYncAqyiudHXWHs7pFUh2nx1QYGKYUxLb6kOhw4qzYwSClM/6YzY5AiaYxOpzcF2S4flcwgpTBOQZZUR79L2C4flcwgpTD92T1290gap/9Fxi4flcwgpTC2pEiqI3a1pBikqFwGKYVJV0GWVEP/HmGMopIZpBRmzinIkmrof4+Zc1CKCmaQUph+060xiqRxOnb3qAUMUgqTtqRIqiGc3aMWMEgpTP+GY5AiaZx+d495UlQyg5TCdLuu3SNpYf2Bs7akqGR+1BXGgbOS6uh39zhwViUzSClM2t0jqQa7e9QGBimFMZmbpDpMi682MEgpjKsgS6rDtPhqA4OUwvQHzppxVtI4HcekqAUMUgpjd4+kOvpBig0pKplBSmHMkyKpjn6aArt7VDKDlMKYFl9SHabFVxsYpBSmP53QMSmSxnF2j9rAIKUwc93eb7t7JI1jS4rawCClMA6clVSHU5DVBgYphdk9JsUoRdJou1ZB7k64INISGKQUxrT4kuqwJUVtYJBSmP4NZ8YgRdIY/cH1xigqmUFKYfrZI41RJI2zK+OsUYoKZpBSmF3dPY6clTRG2N2jFjBIKYyzeyTVsTstvkGKymWQUhjT4kuqw2RuagODlMLM7WpJMUiRNFp/7R5XQVbJDFIKk3b3SKrBjLNqA4OUwnS7tqRIWtjuMSkTLoi0BAYphXFMiqQ6TOamNjBIKcyu2T3+5SSN0U9T4JAUlcyPusJ0HTgrqYZdY1KMUlQwg5TC2N0jqQ67e9QGBimF2b0K8oQLImmqmSdFbWCQUhhXQZZUh2nx1QYGKYXp9y/PmChF0hi7V0E2SFG5DFIKM2cyN0k17FoFuTvhgkhL0GiQEhEnRcRVEbEpIs4Ysv+1EXFFRFwWEf8aEUc0WZ426Pcvh909ksZw4KzaoLEgJSJmgDOBk4HjgFdExHHzDvsKsCEznwicC7yzqfK0RWbaiiJpQWFafLVAky0pJwCbMvPqzLwHOAd40eABmfnZzLyrevpF4NAGy9MK3UwHzUpakGnx1QZNBimHANcNPN9cbRvlZ4BPNlieVpjr7s4kKUmjzOwak2KUonLtM+kCAETEq4ANwI+M2H8acBrA+vXrmZ2dbaQc27dvb+zcy+U7194D3e7Ul3MhJdR1m1jfK2sa6vumu3ojZq+48krWbds00bI0aRrqem+y0vXdZJByPXDYwPNDq233ExHPAn4L+JHM3DnsRJl5NnA2wIYNG3Ljxo3LXliA2dlZmjr3crnwzivY5/prp76cCymhrtvE+l5Z01Df1992N3zuMzz60Y9h4w8ctvALCjUNdb03Wen6brK752Lg2Ig4KiL2BU4Fzhs8ICKOB84CXpiZWxosS2t000Rukhbm7B61QWNBSmbeB5wOXABcCXw0My+PiLdGxAurw/4AWAP8bURcGhHnjTidKl1n90iqYca0+GqBRsekZOb5wPnztr1p4PGzmrx+G3W76cBZSQvqT0GesyVFBTPjbGHs7pFUR/+7jGnxVTKDlMLY3SOpjl2rINvfo4IZpBSmm6bEl7SwjmNS1AIGKYXJzF0D4iRplE51d3d2j0pmkFKYua7dPZIW1nHtHrWAQUph7O6RVIfdPWoDg5TCZOauZlxJGiVM5qYW8OOuMK6CLKkOV0FWGxikFGYuceCspAXNdFwFWeUzSClMNxNjFEkLce0etYFBSmHS7h5JNYQDZ9UCBimF6XZNiy+pnk6YFl9lM0gpTDddYFBSPTOdsLtHRTNIKYxr90iqKyKY6066FNKeM0gpjKsgS6rL7h6VziClMLakSKqrE3b3qGwGKYUxLb6kunpByqRLIe05g5TCZOauJE2SNE4nzJOishmkFMZVkCXV1ekEXZtSVDCDlML0Ms4apUhamN09Kp1BSmF6s3smXQpJJbC7R6UzSCmMafEl1RW2pKhwBimFmes6cFZSPTPhmBSVzSClME5BllSX3T0qnUFKYdJkbpJqsrtHpTNIKYxp8SXV1emYFl9lM0gpTNeBs5JqmjEtvgpnkFIYk7lJqqsTwZwxigpmkFKYtLtHUk3hwFkVziClMN1MOv7VJNXQiXBMiormx11hTIsvqa5OBN3upEsh7TmDlMJ0szcYTpIW0ukEc7akqGAGKYXpmidFUk2dcAqyymaQUhinIEuqy1WQVTqDlMJ0u6bFl1SPafFVOoOUwpgWX1JdpsVX6QxSCjOXroIsqZ6Zjqsgq2wGKYVxFWRJddndo9IZpBTG7h5JdYVr96hwBimFcRVkSXX1WlImXQppzxmkFKbrmBRJNc10TIuvshmkFGaum9iQIqmOTgRzNqWoYAYphXEVZEl1OQVZpTNIKYxp8SXVZVp8lc4gpTCmxZdUl2nxVTqDlMJ0u72VTSVpIY5JUekMUgpjd4+kukzmptIZpBTG7h5JdXUiMEZRyQxSCmNafEl1dTq2pKhsBikF6Y/St7tHUh2mxVfpDFIK0h8AN2NLiqQaZpzdo8I1GqRExEkRcVVEbIqIM4bs3y8iPlLtvygijmyyPONsuWMHv3fR3WzZtoMtd+zgZWd9gStuuJ2XnfWFodtG/a77+v62U868kBf/6YVjr9Hf94o//yIAH7nkOrZs2zGpqpJUiHvum+OG2+6udS+rc5/b02PG3e/q3AvHXfc7d8w1/t6aeP2efAas9HsbVsaVFk0l+omIGeAbwLOBzcDFwCsy84qBY34ReGJm/nxEnAq8ODNfPu68GzZsyEsuuWTZy/vGj32VD110La888XAAPvSlaznm4DVsumk7rzzhgdtG/R527LhtH7zoWgBeNeS6w17f/3O96sTDeduLn7Ds9bBSZmdn2bhx46SLsdewvlfWtNT30/9glm9vvZNjH77wvazOfW5Pjxl3v6tzLxx33e/dP7jxrmz0vTXx+j39DFjJ9zasjM962NZl/7cdEV/OzA1D9zUYpDwFeHNmPrd6/gaAzPz9gWMuqI75QkTsA/w3cHCOKdRyBymPfuMn2Xlfd9nOt9L226fDVW87edLFWLRpuYnvLazvlTXp+i79vqbpttyfO5MKUl4CnJSZ/6t6/mrgxMw8feCYr1XHbK6ef6s65uZ55zoNOA1g/fr133/OOecsWzlv29HlnKvu4Us3zlHSf+lVHfj+9TOc+ph9eeh+5Q0t2r59O2vWrJl0MfYa1vfKmnR99+9rF984x9zESrFSEnCc3koI4Inrkp964v7L+rnz9Kc/fWSQss+yXaVBmXk2cDb0WlKW+xvKxXd/lYv++1pWBdxbRSq9JEgwEzCX9982yrBjF9o23/xrjHr9fQnHHH4Ipzy3zC6fSX/T3NtY3ytrGuq7f1/rsPC9rM59bk+PGXe/22+fzsgWn/r34Gj0vTXx+qV+BqzEextWxgQO3H8Vpzz3GcML34Amg5TrgcMGnh9abRt2zOaqu+cAYGuDZRrq5u07eeWJR/Coznf58yt7EflhB+7Pzdt3sm7Nvmy+5e77bbtp204OXrvfA34PO3bctpu37+QZj1kPwGe+/l0OWrPfA64x6vWPPHgtNzl4VtII/fva1TdtX/BeVuc+t6fHjLvfnfXqDfzcBy4Zey9c6Lr7x30c/j0Pa+y9NfH6pX4GrMR7G1bGyzbfxu0771m2f6N1NBmkXAwcGxFH0QtGTgV+Yt4x5wE/CXwBeAnwmXHjUZpy1qt7rUyzszfz+d/YuNKXl6Rl17+vTbvP/8bSvpX3Wq2eskyl0UJmZ2dX9HqNBSmZeV9EnA5cAMwAf5mZl0fEW4FLMvM84H3AByJiE3ALvUBGkiSp2TEpmXk+cP68bW8aeLwDeGmTZZAkSWUqb1qIJEnaKxikSJKkqWSQIkmSppJBiiRJmkoGKZIkaSoZpEiSpKlkkCJJkqaSQYokSZpKBimSJGkqxQSWylmSiLgJ+E5Dpz8IuLmhc+v+rOuVZX2vLOt75VjXK6uJ+j4iMw8etqO4IKVJEXFJZpaxKlfhrOuVZX2vLOt75VjXK2ul69vuHkmSNJUMUiRJ0lQySLm/syddgL2Idb2yrO+VZX2vHOt6Za1ofTsmRZIkTSVbUiRJ0lQySAEi4qSIuCoiNkXEGZMuT6ki4i8jYktEfG1g24ER8emI+Gb1+2HV9oiI91R1fllEPHngNT9ZHf/NiPjJSbyXaRcRh0XEZyPiioi4PCJ+pdpufTcgIlZHxJci4r+q+n5Ltf2oiLioqtePRMS+1fb9quebqv1HDpzrDdX2qyLiuRN6S1MvImYi4isR8fHquXXdkIi4JiK+GhGXRsQl1bbpuJdk5l79A8wA3wKOBvYF/gs4btLlKvEH+GHgycDXBra9EzijenwG8I7q8fOATwIB/CBwUbX9QODq6vfDqscPm/R7m7Yf4HuBJ1eP1wLfAI6zvhur7wDWVI9XARdV9fhR4NRq+58Bv1A9/kXgz6rHpwIfqR4fV91j9gOOqu49M5N+f9P4A7wW+Bvg49Vz67q5ur4GOGjetqm4l9iSAicAmzLz6sy8BzgHeNGEy1SkzPwccMu8zS8C3l89fj9wysD2v86eLwIPjYjvBZ4LfDozb8nMW4FPAyc1XvjCZOaNmfmf1eNtwJXAIVjfjajqbXv1dFX1k8AzgHOr7fPru/93OBd4ZkREtf2czNyZmd8GNtG7B2lARBwKPB/4i+p5YF2vtKm4lxik9G7s1w0831xt0/JYn5k3Vo//G1hfPR5V7/49Fqlq3j6e3rd767shVffDpcAWejfgbwG3ZeZ91SGDdberXqv9twPrsL7r+mPg14Fu9Xwd1nWTEvhURHw5Ik6rtk3FvWSfpZ5AqiszMyKcTraMImIN8HfAr2bmHb0vkD3W9/LKzDngSRHxUOBjwGMmW6J2iogXAFsy88sRsXHCxdlbPC0zr4+IhwOfjoivD+6c5L3ElhS4Hjhs4Pmh1TYtj+9WTYFUv7dU20fVu3+PmiJiFb0A5UOZ+ffVZuu7YZl5G/BZ4Cn0mrr7X/YG625XvVb7DwC2Yn3X8VTghRFxDb3u92cA78a6bkxmXl/93kIvAD+BKbmXGKTAxcCx1cjxfekNvDpvwmVqk/OA/ijvnwT+cWD7/6xGiv8gcHvVtHgB8JyIeFg1mvw51TYNqPrc3wdcmZnvGthlfTcgIg6uWlCIiAcBz6Y3DuizwEuqw+bXd//v8BLgM9kbXXgecGo1I+Uo4FjgSyvyJgqRmW/IzEMz80h69+PPZOYrsa4bEREPjoi1/cf07gFfY1ruJZMeVTwNP/RGK3+DXh/zb026PKX+AB8GbgTupdcf+TP0+ob/Ffgm8C/AgdWxAZxZ1flXgQ0D5/lpeoPcNgE/Nen3NY0/wNPo9SNfBlxa/TzP+m6svp8IfKWq768Bb6q2H03vg28T8LfAftX21dXzTdX+owfO9VvV3+Eq4ORJv7dp/gE2snt2j3XdTB0fTW8W1H8Bl/c/A6flXmLGWUmSNJXs7pEkSVPJIEWSJE0lgxRJkjSVDFIkSdJUMkiRJElTySBFUuMi4qER8Ytj9j8oIv4tImb24NynR8RPL62EkqaRU5AlNa5aX+jjmfn4Eft/CdgnM9+9B+feH7gwM49fWiklTRtbUiSthLcDj4yISyPiD4bsfyVVRsuI2BgRH+/viIj3RsRrqsdvj4grIuKyiPhDgMy8C7gmIlzhVmoZFxiUtBLOAB6fmU+av6NajuLozLxm3AkiYh3wYuAxmZn9NPWVS4AfwrTnUqvYkiJp0g4Cbqtx3O3ADuB9EfFjwF0D+7YAj1j+okmaJIMUSZN2N731VwbFwONVAJl5H73VWc8FXgD888Axq6vzSGoRgxRJK2EbsHbYjsy8FZiJiMFA5fHVjJ/9gKdU+9cAB2Tm+cCvAd83cPyj6C38J6lFDFIkNS4ztwIXRsTXRgyc/RS9lZ37bqW3zPt/0FuB9Q3AAcDHI+Iy4N+B1w4c/1Tg002UXdLkOHBW0orIzJ8Ys/tMeq0j/1I935yZLxjY3w9IHjCDJyKOBy6vAiFJLWJLiqSJy8z/BD67J8nc6A28/e1lLpKkKWAyN0mSNJVsSZEkSVPJIEWSJE0lgxRJkjSVDFIkSdJUMkiRJElTySBFkiRNpf8LuHRahbOmTqsAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig_c = plt.figure(\"Célérité des ultrasons\", figsize=(9, 6))\n", "plt.title(\"Célérité des ultrasons dans l'air\")\n", "plt.plot(t, E, marker = '*', label = 'E')\n", "plt.grid()\n", "plt.xlabel('t (µs)')\n", "plt.ylabel ('E (sans unité)')\n", "plt.legend()\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "3aa4c7dc-d415-4348-b2d9-af8c9a11baeb", "metadata": {}, "source": [ "## Détermination de la célérité du son" ] }, { "cell_type": "code", "execution_count": 5, "id": "cb6cee74-a745-45aa-9891-0899ed74b264", "metadata": { "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "V = 344.8 m.s-1\n" ] } ], "source": [ "# --- calcul de la célérité du son ---\n", "d = 50e-2\n", "t1 = recherche_front_montant(t, E)\n", "t2 = recherche_front_descendant(t, E)\n", "dt = (t2 - t1) * 1e-6\n", "v = 2 * d / dt\n", "print('V = {} m.s-1'.format(round(v, 1)))" ] }, { "cell_type": "code", "execution_count": null, "id": "b5cf9587-3e01-4a66-9fa7-83fadd880c39", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { "06773149c4f247b0aa4884ca14c57f3e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "IntProgressModel", "state": { "description": "Loading:", "layout": "IPY_MODEL_5a5bf7bbcfaf4118aa6e6582d0eb148d", "max": 10, "style": "IPY_MODEL_95174e78d6ab4226abb135ab0612e1f8" } }, "135f5a5ed6f34272a65016b0de3d282c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "TextModel", "state": { "description": "Nom Fichier", "layout": "IPY_MODEL_dba15a52f7eb4a43ba012aa7f7dff7e6", "style": "IPY_MODEL_22a9e4a73c5a4bb6871e1b1249f47005", "value": "mesures_us" } }, "15cfc3590d57463999f14a4b224b1ee9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "1a0540b31d7940e8b54e336518293dc9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ButtonStyleModel", "state": { "font_family": null, "font_size": null, "font_style": null, "font_variant": null, "font_weight": null, "text_color": null, "text_decoration": null } }, "22a9e4a73c5a4bb6871e1b1249f47005": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "TextStyleModel", "state": { "description_width": "initial", "font_size": null, "text_color": null } }, "2c1eb4e9d8cc44b489ee8bb5ff0acb7f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "3ff21ba75a2141318ebcece4b52a084a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "children": [ "IPY_MODEL_b7846283cb184db484e4b728fbd5d986", "IPY_MODEL_662a7b0e4b694e4a84932c6282f7e06b" ], "layout": "IPY_MODEL_870e13f4a75e406ba627ba8ac08a9038" } }, "44508cb1f5954ea2ba3aba72ed853253": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "52c6e4e749ca40a4b467c7a10a76c155": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "5a5bf7bbcfaf4118aa6e6582d0eb148d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "662a7b0e4b694e4a84932c6282f7e06b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "children": [ "IPY_MODEL_8581d6ce04a1421596ad035a14122942", "IPY_MODEL_9e7f4fc27d184dccbf6688eb4a1f5fc3" ], "layout": "IPY_MODEL_52c6e4e749ca40a4b467c7a10a76c155" } }, "681824c7b1df4282ade8e5ff0e4fdbc5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "margin": "20px 0 0 20px" } }, "8581d6ce04a1421596ad035a14122942": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "layout": "IPY_MODEL_15cfc3590d57463999f14a4b224b1ee9", "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwAAAAJyCAYAAABzHKfwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABGjklEQVR4nO3dfVxUZf7/8fdwDwp4D6h4W5lkinkXUqaloqWbVpulKbnlbqabitVKpeh2Y1q5lplulll2o1u7WqaprKlrm2lKlPdp3n5N8C5FIW6E8/ujH7NNMyAozEGv1/Px8PFwrnOdc33OXMNw3sw5ZxyWZVkCAAAAYAQfuwsAAAAA4D0EAAAAAMAgBAAAAADAIAQAAAAAwCAEAAAAAMAgBAAAAADAIAQAAAAAwCAEAAAAAMAgBAAAAADAIAQAAABQ5Xz11VcKCAjQfffdJ8uy7C4HuKwQAABUuHnz5snhcGjevHmVOo7D4VDXrl0rdYyKcinVeqm4//775XA4tH//frtLQQU7fvy47r77bt10001666235HA47C4JuKwQAIDLwP79++VwOEr916RJE7vLLLeuXbvyix8wTFFRkQYNGqQ6deroX//6l/z9/e0uCbjs+NldAICK07x5c913330el9WoUcO7xXjBjh07FBISYncZACrQ7t271blzZ/3pT39SaGio3eUAlyUCAHAZueKKKzRx4kS7y/Caq6++2u4SAFSwFi1aKCUlxe4ygMsapwABhsnJyVFoaKiaN29eYp/WrVsrODhYWVlZzrbs7GylpKTo6quvVlBQkGrVqqXbbrtN//3vf8s0bvFpSvfff7/H5b89R97hcGjt2rXO/xf/+/X6JZ1Xf/z4cY0ePVpNmzZVYGCg6tWrp7vvvltbt25161t8Hvm+ffv0yiuv6Oqrr1ZgYKAaN26sSZMmqaioqEz7V+yNN95Qq1atFBQUpOjoaD3++OPKzc0tsf+ZM2eUkpKia665RsHBwapRo4YSEhL0xRdfuPU9cuSIRo0apSuvvNLZt2XLlnrooYd0+vTpMtWXk5Ojxx9/XNHR0QoKClKrVq00Z84crVmzRg6Hwy1AFj/Hhw8f1pAhQxQZGSkfHx+tWbNGkrR69Wr94Q9/UIsWLVS9enVVr15d7du31+uvv+5x/OLtZWZmKjExUXXq1FFwcLCuv/565zZ/a9u2berTp49CQ0MVHh6uW2+91eNc/trHH3+sW265RTVr1nTu54svvqjCwkKXfhMnTpTD4fA4tqdrWX79Ot6xY4f69++v2rVru1yLkJaWprvuukuNGjVSYGCg6tatqw4dOujZZ58tteZixa/JvXv36sUXX9RVV12l4OBgxcTEaMGCBZKk/Px8Pfnkk2rSpImCgoLUunVrffbZZx63VxmvsdJOz/N0bcavn8slS5YoPj5eoaGhLqcm5ufna9q0abruuutUrVo1hYaG6sYbb9Qnn3zicZzy9D99+rQmTJigmJgYVa9eXWFhYbriiiuUmJioAwcOeNw+cDnjEwDAMCEhIbrzzjv19ttv68svv1Tnzp1dln/77bfasmWLBgwYoLCwMElSbm6ubr75Zm3cuFHXXXedRo8erczMTC1cuFArVqzQBx98oN///vcVWmdKSormzZunAwcOuPw1MDY2ttT1jh07pri4OP3www/q2rWr7rnnHu3bt08fffSRli5dqhUrVuiGG25wW++xxx7T2rVr1adPHyUkJGjx4sWaOHGi8vPzy3zg9vTTT2vChAmKiIjQsGHD5O/vr4ULF2rHjh0e+588eVJdunTRtm3bFB8fr4ceekhZWVn6+OOP1a1bN3344Yfq16+fpF8O3OPj47V//3717NlT/fv3V35+vvbt26f58+fr0UcfVXh4eKn1FRYWqk+fPlq9erWuvfZaDRw4UCdPntTYsWNLvUD5xIkTiouLU61atXTPPfcoNzfX+dqYMmWK9uzZo+uvv179+/fXqVOntHz5cv3pT3/Srl279NJLL7lt79SpU7rhhhsUHh6uwYMH6+jRo1q4cKESEhK0efNmtWrVytl369atio+P19mzZ3XHHXfoyiuv1MaNGxUfH682bdp4rDc5OVnPP/+8GjRooDvuuEPh4eFat26dHnvsMW3YsEEffvhhqc9TWRTv87XXXqv7779fJ06cUEBAgNLT09W5c2f5+vrq9ttvV+PGjXXq1Clt375dr7/+up588skyj5GUlKQNGzaob9++8vX11YIFCzRw4EDVrFlTM2bM0Pbt23XbbbcpNzdX77//vm6//Xbt2LHDJdx7+zV2Ph9++KFWrlypPn366OGHH3b+kSEvL0+9evXSmjVrFBsbqwceeEAFBQVaunSpbr/9ds2YMUMjR450bqc8/S3LUkJCgjZs2KD4+Hj16tVLPj4+OnDggD755BMNHjxYjRs3vqj9Ai45FoBL3r59+yxJVvPmza2UlBSP/z777DNn/3//+9+WJGv48OFu2xo7dqwlyfr000+dbZMmTbIkWYMGDbKKioqc7WlpaVZAQIBVo0YNKysry9n+1ltvWZKst956y63GxMREj/sgybrppptc2m666SartLcpT+sMHTrUkmQlJye7tC9dutSSZF1xxRVWYWGhsz0xMdGSZDVt2tT68ccfne3Hjh2zatSoYYWGhlp5eXkl1lBs9+7dlp+fn9WgQQMrMzPT2X769GmrRYsWHmsdOHCgJcmaM2eOS3tmZqYVHR1t1a1b1/r5558ty7KsTz75xJJkjR492m3sM2fOWLm5ueet8Y033rAkWb1797bOnTvnbN+2bZsVFBRkSbJSUlJc1pFkSbKGDh3qsk6xvXv3urUVFBRYPXr0sHx9fa0DBw543N7DDz/sMg/Ftf3pT39y6V/8Gnj33Xdd2pOTk53b2rdvn7N95cqVliQrISHBOnv2rLO9qKjIeuihhyxJ1kcffeRsT0lJsSRZq1evdtuP0l7HkqwJEya4rZOUlGRJshYvXuy27Pjx425tnhS/Jq+66irr6NGjzvYNGzZYkqwaNWpYN9xwg8v+LVy40JJk/fnPf3bZVmW9xkr72Syu/9fzUvxc+vj4WKmpqW7rPPHEE5Yka/z48S7vMVlZWVb79u2tgIAA6/DhwxfU/7vvvrMkWf369XMbNzc31zpz5ozH/QAuZwQA4DLw64OSkv6NGjXK2b+wsNBq0KCBVbt2bSs/P9+lPSoqyqpbt65VUFDgbG/WrJnl7+9vHTp0yG3sYcOGWZKsd955x9lmVwDIy8uzgoKCrNq1a1vZ2dlu/Xv06GFJsv7zn/8424oPVubOnevWv3jZd999V2INxYpD0ksvveS2bP78+W61Hjt2zPL19bVuvvlmj9t75ZVXLEnWkiVLLMv638HZb4NNeXTt2tWSZKWlpbkt++Mf/1hiAAgICLCOHTtWrrH++c9/WpKsefPmuW2vWrVqbgddBQUFlp+fn3Xdddc52w4cOGBJslq3bu22/TNnzlg1atRwO9D83e9+Z0lyCx6WZVmnTp2yHA6HdeeddzrbLjQAREZGegyGxQFgxYoVbsvKqvh19/bbb7sta9asmSXJWrt2rUv7uXPnLH9/f6tLly7Otsp8jV1oAOjfv79b/8LCQqtmzZpW8+bNXQ7mixXXNWPGjAvqXxwA7r333vPuF2AKTgECLiMJCQlavnz5efv5+Pho0KBBmjp1qpYtW6bbb79dkrRq1SodOXJEf/7zn+Xn98vbQ1ZWlvbu3auWLVuqYcOGbtvq1q2b5syZo/T0dA0ePLhid6icdu7cqdzcXHXr1s3j3YG6deum1NRUpaen68Ybb3RZ1q5dO7f+xft76tSp84797bffSpLbdktq+/rrr1VYWKi8vDyPF27v3r3buU99+vRRly5dFBUVpeeff17ffvut+vTpo5tuukktW7Ys861Sv/32W1WrVk1t27Z1WxYfH1/ieftNmzZVnTp1PC47c+aMXnzxRS1evFg//PCDsrOzXZb/+OOPbutcddVVql69ukubn5+fIiIiXJ7r4ufU0ylb1atXV2xsrNu5+1999ZWqVaumuXPneqw3ODhYO3fu9LisPNq0aaOAgAC39rvvvlvTp09X//79NWDAAPXo0UNdunRRgwYNyj2Gp9PdoqKitHfvXrdlvr6+qlevnsvzbcdr7Hw6duzo1rZr1y799NNPql+/viZNmuS2/NixY846L6R/y5Yt1bp1a33wwQf6v//7P/Xr109du3ZVbGysfHy4FBJmIgAAhho8eLCmTp2qd9991xkA5s+f71xWrPgc3YiICI/biYqKculnp4uptfic9l8rDkG/vXDUk+ILJOvVq+e2zFM9J0+elCT997//LfVC6uID6vDwcH311VeaMGGClixZomXLlkmSoqOjNW7cOD388MPnrTErK0vR0dEel5X0nJW2LD8/X127dlVaWpratm2rwYMHq3bt2vLz89P+/fv19ttvKy8vz209T8+19Mvz/evnurTntKS6Tp48qXPnznk8MCz225ByIUp6Tjp16qQ1a9boueee0/vvv6+33npLktShQwdNmTJF3bp1K/MYpb0mS1pWUFDgfGzHa+x8SvtZ2LZtm7Zt23beOsvb38/PT59//rkmTpyof/7znxo7dqwkqW7duho5cqSefPJJ+fr6XtgOAZcooi9gqFatWik2NlaffvqpTp8+rZycHC1atEgtWrRQhw4dnP2KDzQyMzM9bicjI8OlX0mK/9J27tw5t2VlvYPN+VRUrRei+OLIo0ePui3zVE9xDWPHjpX1y+mYHv/9+gLoRo0aad68eTp27Ji++eYbTZkyRUVFRRoxYoQ++OCD89YYFhbm/OtoWWosVtJffz/++GOlpaXpgQceUFpammbNmqVnnnlGEydOVK9evc5bz/mU9pyWVHNYWJhq165d6nO6b98+Z/8LfV2W9hfxG2+8UZ999pl++uknrV69WklJSdqyZYtuu+027d27t8T1KlplvsYq8nkrrvPOO+8stc7iMFXe/pJUu3ZtzZgxQ4cPH9b27dv16quvqlatWkpJSdHUqVPL/JwClwsCAGCwwYMHKzc3Vx999JEWLVqks2fPun2RWFhYmJo1a6Y9e/bo8OHDbtsoPgXjfHfnKf4iMk/b+OabbzyuU/xXubL8BV6S8xalX3/9tXJyci641gtRfEeadevWuS3z1NahQwc5HA6tX7++3GP5+PgoNjZWjz/+uPOgrKRbJf62xuzsbKWnp7st+/LLL8tdxw8//CBJzk+Qfs3TPpdX8XPq6XaVZ8+e9bgfnTp10okTJ5ynt5xPzZo1JZXvdVlWwcHB6tq1q1566SU98cQT+vnnn5WamnpR2yyPynyNlfS8FRUVOU/dKquWLVsqLCxMmzZtcvkEo6L6/5rD4VDLli01YsQI51yU5WcHuNwQAACDDRw4UL6+vpo/f77mz58vh8Ph8ZuEExMTVVBQoOTkZFmW5Wz/7rvvNG/ePIWHhztvJViSsLAwtWjRQl988YX27NnjbD9z5oySk5M9rlOrVi1J0qFDh8q0PwEBAbr33nt1/PhxTZ482WXZ8uXLtWLFCl1xxRWKj48v0/bKo/i5nDZtmstfrLOysvTMM8+49Y+MjNTdd9+tL7/8Ui+88ILL81psw4YNziCzbds2j3/xLm4LCgo6b42DBg2SJD311FMu32+wc+dOvf322+dd/7eKb5342wP0tWvXas6cOeXe3m81atRIXbp00Xfffaf33nvPZdlzzz3n8dqMRx55RJL0hz/8QSdOnHBbnpGR4XJb1uJPu9555x2X52T9+vVuY5bF+vXrPX7vQ3nmqaJU5mus+Hn79XckSNK0adNcPmEpCz8/Pw0fPlwHDhzQo48+6vGgfuvWrc6fq/L2379/v8t3EpS2X4ApuAYAuIzs2bOn1G8CHjdunMsvu8jISHXv3l0rV66Uj4+PbrjhBpcv5in2+OOPa+nSpZo/f7527NihW265xXnv9nPnzmnOnDkKDQ09b31jx47VH//4R8XFxen3v/+9ioqK9Nlnn7mccvRrN998sz766CPdeeed6t27t4KCgtSmTRv17du3xDGmTJmitWvX6plnntGXX36pTp06af/+/frwww8VEhKit956q1Iu/Lviiis0YcIEpaSkqHXr1rr77rvl5+enf/7zn2rdurV27drlts5rr72mXbt26fHHH9f8+fMVFxenGjVq6NChQ9q0aZN2796tI0eOKCQkRKmpqXrssccUHx+vq666SrVr19bevXv1ySefKCgoSCNGjDhvjUOHDtX8+fO1dOlStW3bVr1799bJkye1YMEC9ejRQ0uWLCnXc9O3b181adJEU6dO1datW9WqVSvt2rVLn376qfr376+PPvqoXM+hJzNnzlR8fLyGDBmixYsXO78H4Ouvv9aNN97o9klDr169NH78eD399NO64oor1KtXLzVu3FgnTpzQnj17tG7dOj3zzDNq2bKlJOn6669XfHy8Pv/8c8XFxalLly46cOCAPv74Y/Xt21eLFi0qV71TpkzR6tWr1aVLFzVt2lRBQUFKS0vTqlWr1KxZM/Xv3/+in5PyqKzX2NChQzV16lRNnDhR6enpat68uTZt2qStW7fqpptucn6JX1lNmjRJaWlpeuWVV7R06VJ16dJF9erV0+HDh7VlyxZ9++23Wr9+vfN6kPL0T09P1x133KGOHTsqJiZGkZGROnz4sBYvXiwfHx+NGTOmQp9z4JJQmbcYAuAdZbkNqCTrp59+clv33XffdS7/+9//XuIYZ8+etcaPH29dddVVznv/9+7d21q3bp1bX0+3Tyw2c+ZM68orr7T8/f2tRo0aWRMmTLDy8/M93ga0oKDAevzxx61GjRpZfn5+brcR9bSOZf1y+8NHHnnEaty4seXv72/VqVPHuuuuu6wtW7a49fV0y8Jipd0isiRz5syxYmJirICAAKthw4bWo48+auXk5JRYa05OjjV16lSrXbt2VrVq1azg4GCradOmVr9+/ax33nnHeTvW7du3W6NGjbLatm1r1a5d2woMDLSaNWtmJSYmWtu2bStzfWfPnrXGjh1r1a9f3woMDLRiYmKs119/3froo48sSdbf/vY3l/4l1V1s79691p133mnVrVvXCgkJsTp06GAtWLDAWr16dYm3FS1pe40bN7YaN27s1r5lyxbr1ltvtapXr26FhoZavXv3trZs2VLq3KWmplp9+/a16tata/n7+1uRkZFWXFyc9fTTT1sHDx506Xv8+HFryJAhVq1atazg4GDr+uuvt1asWHFBt7Ndvny5NWTIEKtFixZWaGioVb16dSsmJsZ64oknynwr1dL2q7Tbb5b0/FXWayw9Pd265ZZbrJCQECssLMy6/fbbrd27d5d6G1BP7wnFzp07Z/3973+34uPjrbCwMCswMNBq1KiR1atXL2vWrFku33tQnv6HDh2yxo0bZ11//fVWvXr1rICAAKtRo0bWHXfcYa1fv77EeoDLmcOyPHwmCAAwylNPPaVnn31Wy5YtU+/eve0uBwBQiQgAAGCQI0eOOG+HWmz79u26/vrr5evrqx9//FHBwcE2VQcA8AauAQAAgwwfPlz79+9Xx44dVbNmTf3www9asmSJCgoK9Oabb3LwDwAG4BMAADDIe++9p9mzZ2vHjh06ffq0qlevrg4dOmjs2LFKSEiwuzwAgBcQAAAAAACD8D0AAAAAgEEIAAAAAIBBjLsIuKioSD/++KNCQ0PlcDjsLgcAAACoEJZl6cyZM6pfv36pX+xoXAD48ccfFR0dbXcZAAAAQKU4dOiQGjZsWOJy4wJAaGiopF+emLCwMK+OXVBQoJUrV6pnz57y9/f36tiwH/NvLubebMy/uZh7s9kx/1lZWYqOjnYe75bEuABQfNpPWFiYLQEgJCREYWFhvBEYiPk3F3NvNubfXMy92eyc//Od5s5FwAAAAIBBCAAAAACAQQgAAAAAgEEIAAAAAIBBCAAAAACAQQgAAAAAgEEIAAAAAIBBCAAAAACAQQgAAAAAgEEIAAAAAIBBCAAAAACAQQgAAAAAgEEIAAAAAIBBCAAAAACAQQgAAAAAgEEIAAAAAIBB/OwuAN5RWGRp476TOnomV/VCg9SucU1tPvCTjp7JVZ1qgZJDOn42T/VCg9SxaS1JKnP/Xy+72MeVuW27a2tdv7p2n3ZoyXdHFFWjmldr++2cVuXnuSq/Ri507COnsrX3tEP554q06eAJr+/H+X7G7X49dGxaS74+DtveHwHANLYGgP/85z964YUXtHnzZh05ckSLFi1Sv379Sl1nzZo1SkpK0rZt2xQdHa2nnnpK999/v1fqvVQt33pEk5Zs15HTuc42H4dUZHnuXyPEX5J0KqegTP1/u+xiH1fmtu2vzVfavsXrtXma04vfF/se21n7hY/tq9f++m/b9uPXqtrrISo8SCl9Y9SrVZTnggEAFcrWU4Cys7PVpk0bzZw5s0z99+3bp9tuu03dunVTenq6Ro8erQcffFArVqyo5EovXcu3HtHwd9NcDv6lkg8MpF8OCn57YFBa/98uu9jHlbltU2vzNKferO1ymoequq3yjFXVXg8Zp3M1/N00Ld96pMSaAAAVx9ZPAHr37q3evXuXuf/s2bPVtGlTvfTSS5Kkli1b6osvvtDf/vY3JSQkVFaZl6zCIkuTlmxXKccBAGA7S5JD0qQl29UjJpLTgQCgkl1S1wCsX79e3bt3d2lLSEjQ6NGjS1wnLy9PeXl5zsdZWVmSpIKCAhUUlPwXsMpQPJ63xt2w76TbX/4BoCqyJB05nav1e46q0/+/RuFy4e33flQdzL3Z7Jj/so51SQWAjIwMRUREuLRFREQoKytLP//8s4KDg93WmTx5siZNmuTWvnLlSoWEhFRaraVJTU31yjibjzsk+XplLACoCCvXbdCJHZfn55beeu9H1cPcm82b85+Tk1OmfpdUALgQycnJSkpKcj7OyspSdHS0evbsqbCwMK/WUlBQoNTUVPXo0UP+/v6VPl7tfSf1zu5NlT4OAFSUnjd2uiw/AfDmez+qDubebHbMf/GZLudzSQWAyMhIZWZmurRlZmYqLCzM41//JSkwMFCBgYFu7f7+/rb9MHpr7Lgr6ikqPEgZp3O5DgBAleaQFBkepLgr6l221wDY+XsH9mLuzebN+S/rOJfUF4HFxcVp1apVLm2pqamKi4uzqaKqzdfHoZS+MZJ++eUKAFVR8ftTSt+Yy/bgHwCqElsDwNmzZ5Wenq709HRJv9zmMz09XQcPHpT0y+k7Q4YMcfZ/6KGHtHfvXj3++OPauXOnXnvtNf3jH//QmDFj7Cj/ktCrVZRm3XedIsODXNpL+x1bI8TfeZ/wsvT/7bKLfVyZ2za1Nk9z6s3aLqd5qKrbKs9YVe31EBkepFn3Xcf3AACAl9h6CtCmTZvUrVs35+Pic/UTExM1b948HTlyxBkGJKlp06ZaunSpxowZo5dfflkNGzbUG2+8wS1Az6NXqyj1iInkm4CrwDcBz/pwhZpdE8s3AV+ir5GL+ibgbeka/vsEfffjWb4JmG8CBgBbOSzLMur08KysLIWHh+v06dO2XAS8bNky3XrrrZwLaCDm31zMvdmYf3Mx92azY/7Lepx7SV0DAAAAAODiEAAAAAAAgxAAAAAAAIMQAAAAAACDEAAAAAAAgxAAAAAAAIMQAAAAAACDEAAAAAAAgxAAAAAAAIMQAAAAAACDEAAAAAAAgxAAAAAAAIMQAAAAAACDEAAAAAAAgxAAAAAAAIMQAAAAAACDEAAAAAAAgxAAAAAAAIMQAAAAAACDEAAAAAAAgxAAAAAAAIMQAAAAAACDEAAAAAAAgxAAAAAAAIMQAAAAAACDEAAAAAAAgxAAAAAAAIMQAAAAAACDEAAAAAAAgxAAAAAAAIMQAAAAAACDEAAAAAAAgxAAAAAAAIMQAAAAAACDEAAAAAAAgxAAAAAAAIMQAAAAAACDEAAAAAAAgxAAAAAAAIMQAAAAAACDEAAAAAAAgxAAAAAAAIMQAAAAAACDEAAAAAAAgxAAAAAAAIMQAAAAAACDEAAAAAAAgxAAAAAAAIMQAAAAAACDEAAAAAAAgxAAAAAAAIMQAAAAAACDEAAAAAAAgxAAAAAAAIMQAAAAAACDEAAAAAAAgxAAAAAAAIMQAAAAAACDEAAAAAAAgxAAAAAAAIMQAAAAAACDEAAAAAAAgxAAAAAAAIMQAAAAAACDEAAAAAAAgxAAAAAAAIMQAAAAAACDEAAAAAAAgxAAAAAAAIMQAAAAAACDEAAAAAAAgxAAAAAAAIMQAAAAAACDEAAAAAAAgxAAAAAAAIMQAAAAAACDEAAAAAAAgxAAAAAAAIMQAAAAAACDEAAAAAAAgxAAAAAAAIMQAAAAAACDEAAAAAAAgxAAAAAAAIMQAAAAAACDEAAAAAAAgxAAAAAAAIPYHgBmzpypJk2aKCgoSJ06ddLGjRtL7T99+nS1aNFCwcHBio6O1pgxY5Sbm+ulagEAAIBLm60BYOHChUpKSlJKSorS0tLUpk0bJSQk6OjRox77v//++xo3bpxSUlK0Y8cOvfnmm1q4cKGeeOIJL1cOAAAAXJpsDQDTpk3TsGHDNHToUMXExGj27NkKCQnR3LlzPfb/8ssvFR8fr4EDB6pJkybq2bOn7r333vN+agAAAADgF352DZyfn6/NmzcrOTnZ2ebj46Pu3btr/fr1Htfp3Lmz3n33XW3cuFEdO3bU3r17tWzZMg0ePLjEcfLy8pSXl+d8nJWVJUkqKChQQUFBBe1N2RSP5+1xUTUw/+Zi7s3G/JuLuTebHfNf1rFsCwDHjx9XYWGhIiIiXNojIiK0c+dOj+sMHDhQx48f1w033CDLsnTu3Dk99NBDpZ4CNHnyZE2aNMmtfeXKlQoJCbm4nbhAqamptoyLqoH5Nxdzbzbm31zMvdm8Of85OTll6mdbALgQa9as0XPPPafXXntNnTp10p49ezRq1Cg9/fTTGj9+vMd1kpOTlZSU5HyclZWl6Oho9ezZU2FhYd4qXdIvqSw1NVU9evSQv7+/V8eG/Zh/czH3ZmP+zcXcm82O+S8+0+V8bAsAderUka+vrzIzM13aMzMzFRkZ6XGd8ePHa/DgwXrwwQclSddee62ys7P1xz/+UU8++aR8fNwvaQgMDFRgYKBbu7+/v20/jHaODfsx/+Zi7s3G/JuLuTebN+e/rOPYdhFwQECA2rVrp1WrVjnbioqKtGrVKsXFxXlcJycnx+0g39fXV5JkWVblFQsAAABcJmw9BSgpKUmJiYlq3769OnbsqOnTpys7O1tDhw6VJA0ZMkQNGjTQ5MmTJUl9+/bVtGnT1LZtW+cpQOPHj1ffvn2dQQAAAABAyWwNAAMGDNCxY8c0YcIEZWRkKDY2VsuXL3deGHzw4EGXv/g/9dRTcjgceuqpp3T48GHVrVtXffv21bPPPmvXLgAAAACXFNsvAh45cqRGjhzpcdmaNWtcHvv5+SklJUUpKSleqAwAAAC4/Nj6RWAAAAAAvIsAAAAAABiEAAAAAAAYhAAAAAAAGIQAAAAAABiEAAAAAAAYhAAAAAAAGIQAAAAAABiEAAAAAAAYhAAAAAAAGIQAAAAAABiEAAAAAAAYhAAAAAAAGIQAAAAAABiEAAAAAAAYhAAAAAAAGIQAAAAAABiEAAAAAAAYhAAAAAAAGIQAAAAAABiEAAAAAAAYhAAAAAAAGIQAAAAAABiEAAAAAAAYhAAAAAAAGIQAAAAAABiEAAAAAAAYhAAAAAAAGIQAAAAAABiEAAAAAAAYhAAAAAAAGIQAAAAAABiEAAAAAAAYhAAAAAAAGIQAAAAAABiEAAAAAAAYhAAAAAAAGIQAAAAAABiEAAAAAAAYhAAAAAAAGIQAAAAAABiEAAAAAAAYhAAAAAAAGIQAAAAAABiEAAAAAAAYhAAAAAAAGIQAAAAAABiEAAAAAAAYhAAAAAAAGIQAAAAAABiEAAAAAAAYhAAAAAAAGIQAAAAAABiEAAAAAAAYhAAAAAAAGIQAAAAAABiEAAAAAAAYhAAAAAAAGIQAAAAAABiEAAAAAAAYhAAAAAAAGIQAAAAAABiEAAAAAAAYhAAAAAAAGIQAAAAAABiEAAAAAAAYhAAAAAAAGIQAAAAAABiEAAAAAAAYhAAAAAAAGIQAAAAAABiEAAAAAAAYhAAAAAAAGIQAAAAAABiEAAAAAAAYhAAAAAAAGIQAAAAAABiEAAAAAAAYhAAAAAAAGIQAAAAAABiEAAAAAAAYhAAAAAAAGIQAAAAAABiEAAAAAAAYhAAAAAAAGIQAAAAAABiEAAAAAAAYxPYAMHPmTDVp0kRBQUHq1KmTNm7cWGr/U6dOacSIEYqKilJgYKCuuuoqLVu2zEvVAgAAAJc2PzsHX7hwoZKSkjR79mx16tRJ06dPV0JCgnbt2qV69eq59c/Pz1ePHj1Ur149ffTRR2rQoIEOHDigGjVqeL94AAAA4BJkawCYNm2ahg0bpqFDh0qSZs+eraVLl2ru3LkaN26cW/+5c+fq5MmT+vLLL+Xv7y9JatKkiTdLBgAAAC5ptgWA/Px8bd68WcnJyc42Hx8fde/eXevXr/e4zieffKK4uDiNGDFCH3/8serWrauBAwfqL3/5i3x9fT2uk5eXp7y8POfjrKwsSVJBQYEKCgoqcI/Or3g8b4+LqoH5Nxdzbzbm31zMvdnsmP+yjmVbADh+/LgKCwsVERHh0h4REaGdO3d6XGfv3r36/PPPNWjQIC1btkx79uzRww8/rIKCAqWkpHhcZ/LkyZo0aZJb+8qVKxUSEnLxO3IBUlNTbRkXVQPzby7m3mzMv7mYe7N5c/5zcnLK1M/WU4DKq6ioSPXq1dPrr78uX19ftWvXTocPH9YLL7xQYgBITk5WUlKS83FWVpaio6PVs2dPhYWFeat0Sb+kstTUVPXo0cN5ChPMwfybi7k3G/NvLubebHbMf/GZLudjWwCoU6eOfH19lZmZ6dKemZmpyMhIj+tERUXJ39/f5XSfli1bKiMjQ/n5+QoICHBbJzAwUIGBgW7t/v7+tv0w2jk27Mf8m4u5Nxvzby7m3mzenP+yjmPbbUADAgLUrl07rVq1ytlWVFSkVatWKS4uzuM68fHx2rNnj4qKipxt33//vaKiojwe/AMAAABwZev3ACQlJWnOnDl6++23tWPHDg0fPlzZ2dnOuwINGTLE5SLh4cOH6+TJkxo1apS+//57LV26VM8995xGjBhh1y4AAAAAlxRbrwEYMGCAjh07pgkTJigjI0OxsbFavny588LggwcPysfnfxklOjpaK1as0JgxY9S6dWs1aNBAo0aN0l/+8he7dgEAAAC4pNh+EfDIkSM1cuRIj8vWrFnj1hYXF6evvvqqkqsCAAAALk+2ngIEAAAAwLsIAAAAAIBBCAAAAACAQQgAAAAAgEEIAAAAAIBBCAAAAACAQQgAAAAAgEEIAAAAAIBBCAAAAACAQQgAAAAAgEEIAAAAAIBBCAAAAACAQQgAAAAAgEEIAAAAAIBBCAAAAACAQQgAAAAAgEEIAAAAAIBBCAAAAACAQQgAAAAAgEEIAAAAAIBBCAAAAACAQQgAAAAAgEEIAAAAAIBBCAAAAACAQQgAAAAAgEEIAAAAAIBBCAAAAACAQQgAAAAAgEEIAAAAAIBBCAAAAACAQQgAAAAAgEEIAAAAAIBBCAAAAACAQQgAAAAAgEEIAAAAAIBB/Mq7wqlTp7Ro0SKtW7dOBw4cUE5OjurWrau2bdsqISFBnTt3row6AQAAAFSAMn8C8OOPP+rBBx9UVFSUnnnmGf3888+KjY3VLbfcooYNG2r16tXq0aOHYmJitHDhwsqsGQAAAMAFKvMnAG3btlViYqI2b96smJgYj31+/vlnLV68WNOnT9ehQ4f06KOPVlihAAAAAC5emQPA9u3bVbt27VL7BAcH695779W9996rEydOXHRxAAAAACpWmU8BOt/B/8X2BwAAAFD5yhwAvvrqqzJvNCcnR9u2bbugggAAAABUnjIHgMGDByshIUEffvihsrOzPfbZvn27nnjiCTVv3lybN2+usCIBAAAAVIxyXQMwa9YsPfXUUxo4cKCuuuoq1a9fX0FBQfrpp5+0c+dOnT17Vv3799fKlSt17bXXVmbdAAAAAC5AmQOAv7+/HnnkET3yyCPatGmTvvjiCx04cEA///yz2rRpozFjxqhbt26qVatWZdYLAAAA4CKU+4vAJKl9+/Zq3759RdcCAAAAoJKV+RoAAAAAAJc+AgAAAABgEAIAAAAAYBACAAAAAGAQAgAAAABgkHIFgFtvvVWnT592Pn7++ed16tQp5+MTJ04oJiamwooDAAAAULHKFQBWrFihvLw85+PnnntOJ0+edD4+d+6cdu3aVXHVAQAAAKhQ5QoAlmWV+hgAAABA1cY1AAAAAIBByhUAHA6HHA6HWxsAAACAS4NfeTpblqX7779fgYGBkqTc3Fw99NBDqlatmiS5XB8AAAAAoOopVwBITEx0eXzfffe59RkyZMjFVQQAAACg0pQrALz11luVVQcAAAAAL+AiYAAAAMAgBAAAAADAIAQAAAAAwCAEAAAAAMAgBAAAAADAIAQAAAAAwCAEAAAAAMAgBAAAAADAIAQAAAAAwCAEAAAAAMAgBAAAAADAIAQAAAAAwCAEAAAAAMAgBAAAAADAIAQAAAAAwCAEAAAAAMAgBAAAAADAIAQAAAAAwCAEAAAAAMAgBAAAAADAIAQAAAAAwCAEAAAAAMAgBAAAAADAIAQAAAAAwCAEAAAAAMAgBAAAAADAIAQAAAAAwCAEAAAAAMAgBAAAAADAIFUiAMycOVNNmjRRUFCQOnXqpI0bN5ZpvQULFsjhcKhfv36VWyAAAABwmbA9ACxcuFBJSUlKSUlRWlqa2rRpo4SEBB09erTU9fbv369HH31UN954o5cqBQAAAC59tgeAadOmadiwYRo6dKhiYmI0e/ZshYSEaO7cuSWuU1hYqEGDBmnSpElq1qyZF6sFAAAALm1+dg6en5+vzZs3Kzk52dnm4+Oj7t27a/369SWu99e//lX16tXTAw88oHXr1pU6Rl5envLy8pyPs7KyJEkFBQUqKCi4yD0on+LxvD0uqgbm31zMvdmYf3Mx92azY/7LOpatAeD48eMqLCxURESES3tERIR27tzpcZ0vvvhCb775ptLT08s0xuTJkzVp0iS39pUrVyokJKTcNVeE1NRUW8ZF1cD8m4u5Nxvzby7m3mzenP+cnJwy9bM1AJTXmTNnNHjwYM2ZM0d16tQp0zrJyclKSkpyPs7KylJ0dLR69uypsLCwyirVo4KCAqWmpqpHjx7y9/f36tiwH/NvLubebMy/uZh7s9kx/8VnupyPrQGgTp068vX1VWZmpkt7ZmamIiMj3fr/8MMP2r9/v/r27etsKyoqkiT5+flp165dat68ucs6gYGBCgwMdNuWv7+/bT+Mdo4N+zH/5mLuzcb8m4u5N5s357+s49h6EXBAQIDatWunVatWOduKioq0atUqxcXFufW/+uqrtWXLFqWnpzv//e53v1O3bt2Unp6u6Ohob5YPAAAAXHJsPwUoKSlJiYmJat++vTp27Kjp06crOztbQ4cOlSQNGTJEDRo00OTJkxUUFKRWrVq5rF+jRg1JcmsHAAAA4M72ADBgwAAdO3ZMEyZMUEZGhmJjY7V8+XLnhcEHDx6Uj4/tdysFAAAALgu2BwBJGjlypEaOHOlx2Zo1a0pdd968eRVfEAAAAHCZ4k/rAAAAgEEIAAAAAIBBCAAAAACAQQgAAAAAgEEIAAAAAIBBCAAAAACAQQgAAAAAgEEIAAAAAIBBCAAAAACAQQgAAAAAgEEIAAAAAIBBCAAAAACAQQgAAAAAgEEIAAAAAIBBCAAAAACAQQgAAAAAgEEIAAAAAIBBCAAAAACAQQgAAAAAgEEIAAAAAIBBCAAAAACAQQgAAAAAgEEIAAAAAIBBCAAAAACAQQgAAAAAgEEIAAAAAIBBCAAAAACAQQgAAAAAgEEIAAAAAIBBCAAAAACAQQgAAAAAgEEIAAAAAIBBCAAAAACAQQgAAAAAgEEIAAAAAIBBCAAAAACAQQgAAAAAgEEIAAAAAIBBCAAAAACAQQgAAAAAgEEIAAAAAIBBCAAAAACAQQgAAAAAgEEIAAAAAIBBCAAAAACAQQgAAAAAgEEIAAAAAIBBCAAAAACAQQgAAAAAgEEIAAAAAIBBCAAAAACAQQgAAAAAgEEIAAAAAIBBCAAAAACAQQgAAAAAgEEIAAAAAIBBCAAAAACAQQgAAAAAgEEIAAAAAIBBCAAAAACAQQgAAAAAgEEIAAAAAIBBCAAAAACAQQgAAAAAgEEIAAAAAIBBCAAAAACAQQgAAAAAgEEIAAAAAIBBCAAAAACAQQgAAAAAgEEIAAAAAIBBCAAAAACAQQgAAAAAgEEIAAAAAIBBCAAAAACAQQgAAAAAgEEIAAAAAIBBCAAAAACAQQgAAAAAgEEIAAAAAIBBCAAAAACAQQgAAAAAgEEIAAAAAIBBCAAAAACAQQgAAAAAgEEIAAAAAIBBCAAAAACAQapEAJg5c6aaNGmioKAgderUSRs3biyx75w5c3TjjTeqZs2aqlmzprp3715qfwAAAAD/Y3sAWLhwoZKSkpSSkqK0tDS1adNGCQkJOnr0qMf+a9as0b333qvVq1dr/fr1io6OVs+ePXX48GEvVw4AAABcemwPANOmTdOwYcM0dOhQxcTEaPbs2QoJCdHcuXM99n/vvff08MMPKzY2VldffbXeeOMNFRUVadWqVV6uHAAAALj0+Nk5eH5+vjZv3qzk5GRnm4+Pj7p3767169eXaRs5OTkqKChQrVq1PC7Py8tTXl6e83FWVpYkqaCgQAUFBRdRffkVj+ftcVE1MP/mYu7Nxvybi7k3mx3zX9axbA0Ax48fV2FhoSIiIlzaIyIitHPnzjJt4y9/+Yvq16+v7t27e1w+efJkTZo0ya195cqVCgkJKX/RFSA1NdWWcVE1MP/mYu7Nxvybi7k3mzfnPycnp0z9bA0AF+v555/XggULtGbNGgUFBXnsk5ycrKSkJOfjrKws53UDYWFh3ipV0i+pLDU1VT169JC/v79Xx4b9mH9zMfdmY/7NxdybzY75Lz7T5XxsDQB16tSRr6+vMjMzXdozMzMVGRlZ6rovvviinn/+ef373/9W69atS+wXGBiowMBAt3Z/f3/bfhjtHBv2Y/7Nxdybjfk3F3NvNm/Of1nHsfUi4ICAALVr187lAt7iC3rj4uJKXG/q1Kl6+umntXz5crVv394bpQIAAACXBdtPAUpKSlJiYqLat2+vjh07avr06crOztbQoUMlSUOGDFGDBg00efJkSdKUKVM0YcIEvf/++2rSpIkyMjIkSdWrV1f16tVt2w8AAADgUmB7ABgwYICOHTumCRMmKCMjQ7GxsVq+fLnzwuCDBw/Kx+d/H1TMmjVL+fn5uuuuu1y2k5KSookTJ3qzdAAAAOCSY3sAkKSRI0dq5MiRHpetWbPG5fH+/fsrvyAAAADgMmX7F4EBAAAA8B4CAAAAAGAQAgAAAABgEAIAAAAAYBACAAAAAGAQAgAAAABgEAIAAAAAYBACAAAAAGAQAgAAAABgEAIAAAAAYBACAAAAAGAQAgAAAABgEAIAAAAAYBACAAAAAGAQAgAAAABgEAIAAAAAYBACAAAAAGAQAgAAAABgEAIAAAAAYBACAAAAAGAQAgAAAABgEAIAAAAAYBACAAAAAGAQAgAAAABgEAIAAAAAYBACAAAAAGAQAgAAAABgEAIAAAAAYBACAAAAAGAQAgAAAABgEAIAAAAAYBACAAAAAGAQAgAAAABgEAIAAAAAYBACAAAAAGAQAgAAAABgEAIAAAAAYBACAAAAAGAQAgAAAABgEAIAAAAAYBACAAAAAGAQAgAAAABgEAIAAAAAYBACAAAAAGAQAgAAAABgEAIAAAAAYBACAAAAAGAQAgAAAABgEAIAAAAAYBACAAAAAGAQAgAAAABgEAIAAAAAYBACAAAAAGAQAgAAAABgEAIAAAAAYBACAAAAAGAQAgAAAABgEAIAAAAAYBACAAAAAGAQAgAAAABgEAIAAAAAYBACAAAAAGAQAgAAAABgEAIAAAAAYBACAAAAAGAQAgAAAABgEAIAAAAAYBACAAAAAGAQAgAAAABgEAIAAAAAYBACAAAAAGAQAgAAAABgEAIAAAAAYBACAAAAAGAQAgAAAABgEAIAAAAAYBACAAAAAGAQAgAAAABgEAIAAAAAYBACAAAAAGAQAgAAAABgEAIAAAAAYBACAAAAAGAQAgAAAABgEAIAAAAAYBACAAAAAGAQP7sLMElhkaXdpx1a8t0RRdWopnaNa2rzgZ909Eyu6oUGuTyuUy1QckjHz+a5LbuQxx2b1pKvj8PupwAA3BQWWdq472SZ3s8q+r3RG4837jupzccdqvnDCfn6+Xmldjufp9+O3bFpLUm64Dn+7fre3LeLHat1/eq2/d6/XF4/VeFn+EJra9sw1M631lJViQAwc+ZMvfDCC8rIyFCbNm00Y8YMdezYscT+H374ocaPH6/9+/fryiuv1JQpU3Trrbd6seLyW771iCZ+sk0ZWb7S9i2SJB+HVGT9r89vH//a+fqe73FUeJBS+saoV6uoCtgbAKgYy7ce0aQl23XkdK6zzZvvjd577Kt3dm/2au3eHKu0sWuE+EuSTuUUVNj63ty3ix/Lnt/79u/3pTl2RdYWGRaoWyMdqopHqLafArRw4UIlJSUpJSVFaWlpatOmjRISEnT06FGP/b/88kvde++9euCBB/TNN9+oX79+6tevn7Zu3erlystu+dYjGv5umjKy8lzaf/uCKukFVpa+53uccTpXw99N0/KtR8pQMQBUvuL3xl8f/EvefW/09uPLdazSxj6VU+B28H6x619MbVX5efTmWFW5FjvHrsjaMrPyNPd7H63YllnyRmxiewCYNm2ahg0bpqFDhyomJkazZ89WSEiI5s6d67H/yy+/rF69eumxxx5Ty5Yt9fTTT+u6667Tq6++6uXKy6awyNKkJdtVyuvHK4rHn7RkuwpLezUDgBdUlfdGAKgsxe9vz362s8ode9l6ClB+fr42b96s5ORkZ5uPj4+6d++u9evXe1xn/fr1SkpKcmlLSEjQ4sWLPfbPy8tTXt7//vKelZUlSSooKFBBQcl/UagoG/addPvrll0sSUdO52r9nqPq9P/PqYT3FL/evPG6Q9XC3LurSu+NAFB5HDpyOs9rx15l/T1jawA4fvy4CgsLFRER4dIeERGhnTt3elwnIyPDY/+MjAyP/SdPnqxJkya5ta9cuVIhISEXWHnZbT7ukORb6eOUx8p1G3RiR9VKoiZJTU21uwTYhLn/n6r43ggAlcVbx145OTll6lclLgKuTMnJyS6fGGRlZSk6Olo9e/ZUWFhYpY9fe99JvbN7U6WPUx49b+zEJwA2KCgoUGpqqnr06CF/f3+7y4EXMffuquJ7IwBUFm8dexWf6XI+tgaAOnXqyNfXV5mZrhdHZGZmKjIy0uM6kZGR5eofGBiowMBAt3Z/f3+v/CKOu6KeosKDlHE61/ZzXR2SIsODFHdFPW4JaiNvvfZQ9TD3/1OV3hsBoPJYivLisVdZf8fYehFwQECA2rVrp1WrVjnbioqKtGrVKsXFxXlcJy4uzqW/9MvH6iX1t5uvj0MpfWMk/XIAbpfisVP6xnDwD8B2VeW9EQAqS/F725O9r65yx1623wUoKSlJc+bM0dtvv60dO3Zo+PDhys7O1tChQyVJQ4YMcblIeNSoUVq+fLleeukl7dy5UxMnTtSmTZs0cuRIu3bhvHq1itKs+65TRJjrJxG/fS2U9to4X9/zPY4MD9Ks+67jewAAVBnF742R4UEu7d58b/T248t1rNLGrhHi77yXf0WtfzG1VeXn0ZtjVeVa7By7ImuLDA/UH64qUsI1rteuVgW2XwMwYMAAHTt2TBMmTFBGRoZiY2O1fPly54W+Bw8elI/P/3JK586d9f777+upp57SE088oSuvvFKLFy9Wq1at7NqFMunVKkpdr6ytVxcuV7NrYvkmYADQL++NPWIiL+9vAt57TCvXbVD3+I58E7CB3wQ868MVtvzev1xeP1XhZ/hivgl4xfLP7HyLLZHDsiyjTr/MyspSeHi4Tp8+7ZWLgH+toKBAy5Yt06233sp5wAZi/s3F3JuN+TcXc282O+a/rMe5tp8CBAAAAMB7CAAAAACAQQgAAAAAgEEIAAAAAIBBCAAAAACAQQgAAAAAgEEIAAAAAIBBCAAAAACAQQgAAAAAgEEIAAAAAIBBCAAAAACAQQgAAAAAgEEIAAAAAIBBCAAAAACAQQgAAAAAgEEIAAAAAIBBCAAAAACAQfzsLsDbLMuSJGVlZXl97IKCAuXk5CgrK0v+/v5eHx/2Yv7Nxdybjfk3F3NvNjvmv/j4tvh4tyTGBYAzZ85IkqKjo22uBAAAAKh4Z86cUXh4eInLHdb5IsJlpqioSD/++KNCQ0PlcDi8OnZWVpaio6N16NAhhYWFeXVs2I/5Nxdzbzbm31zMvdnsmH/LsnTmzBnVr19fPj4ln+lv3CcAPj4+atiwoa01hIWF8UZgMObfXMy92Zh/czH3ZvP2/Jf2l/9iXAQMAAAAGIQAAAAAABiEAOBFgYGBSklJUWBgoN2lwAbMv7mYe7Mx/+Zi7s1WleffuIuAAQAAAJPxCQAAAABgEAIAAAAAYBACAAAAAGAQAgAAAABgEAKAF82cOVNNmjRRUFCQOnXqpI0bN9pdErxg8uTJ6tChg0JDQ1WvXj3169dPu3btsrss2OD555+Xw+HQ6NGj7S4FXnD48GHdd999ql27toKDg3Xttddq06ZNdpcFLygsLNT48ePVtGlTBQcHq3nz5nr66afFfVcuP//5z3/Ut29f1a9fXw6HQ4sXL3ZZblmWJkyYoKioKAUHB6t79+7avXu3PcX+CgHASxYuXKikpCSlpKQoLS1Nbdq0UUJCgo4ePWp3aahka9eu1YgRI/TVV18pNTVVBQUF6tmzp7Kzs+0uDV709ddf6+9//7tat25tdynwgp9++knx8fHy9/fXZ599pu3bt+ull15SzZo17S4NXjBlyhTNmjVLr776qnbs2KEpU6Zo6tSpmjFjht2loYJlZ2erTZs2mjlzpsflU6dO1SuvvKLZs2drw4YNqlatmhISEpSbm+vlSl1xG1Av6dSpkzp06KBXX31VklRUVKTo6Gj9+c9/1rhx42yuDt507Ngx1atXT2vXrlWXLl3sLgdecPbsWV133XV67bXX9Mwzzyg2NlbTp0+3uyxUonHjxum///2v1q1bZ3cpsEGfPn0UERGhN99809l25513Kjg4WO+++66NlaEyORwOLVq0SP369ZP0y1//69evr7Fjx+rRRx+VJJ0+fVoRERGaN2+e7rnnHttq5RMAL8jPz9fmzZvVvXt3Z5uPj4+6d++u9evX21gZ7HD69GlJUq1atWyuBN4yYsQI3XbbbS7vAbi8ffLJJ2rfvr1+//vfq169emrbtq3mzJljd1nwks6dO2vVqlX6/vvvJUnffvutvvjiC/Xu3dvmyuBN+/btU0ZGhst7f3h4uDp16mT78Z+fraMb4vjx4yosLFRERIRLe0REhHbu3GlTVbBDUVGRRo8erfj4eLVq1crucuAFCxYsUFpamr7++mu7S4EX7d27V7NmzVJSUpKeeOIJff3113rkkUcUEBCgxMREu8tDJRs3bpyysrJ09dVXy9fXV4WFhXr22Wc1aNAgu0uDF2VkZEiSx+O/4mV2IQAAXjRixAht3bpVX3zxhd2lwAsOHTqkUaNGKTU1VUFBQXaXAy8qKipS+/bt9dxzz0mS2rZtq61bt2r27NkEAAP84x//0Hvvvaf3339f11xzjdLT0zV69GjVr1+f+UeVwClAXlCnTh35+voqMzPTpT0zM1ORkZE2VQVvGzlypD799FOtXr1aDRs2tLsceMHmzZt19OhRXXfddfLz85Ofn5/Wrl2rV155RX5+fiosLLS7RFSSqKgoxcTEuLS1bNlSBw8etKkieNNjjz2mcePG6Z577tG1116rwYMHa8yYMZo8ebLdpcGLio/xquLxHwHACwICAtSuXTutWrXK2VZUVKRVq1YpLi7OxsrgDZZlaeTIkVq0aJE+//xzNW3a1O6S4CW33HKLtmzZovT0dOe/9u3ba9CgQUpPT5evr6/dJaKSxMfHu93u9/vvv1fjxo1tqgjelJOTIx8f10MsX19fFRUV2VQR7NC0aVNFRka6HP9lZWVpw4YNth//cQqQlyQlJSkxMVHt27dXx44dNX36dGVnZ2vo0KF2l4ZKNmLECL3//vv6+OOPFRoa6jzvLzw8XMHBwTZXh8oUGhrqdq1HtWrVVLt2ba4BucyNGTNGnTt31nPPPae7775bGzdu1Ouvv67XX3/d7tLgBX379tWzzz6rRo0a6ZprrtE333yjadOm6Q9/+IPdpaGCnT17Vnv27HE+3rdvn9LT01WrVi01atRIo0eP1jPPPKMrr7xSTZs21fjx41W/fn3nnYJsY8FrZsyYYTVq1MgKCAiwOnbsaH311Vd2lwQvkOTx31tvvWV3abDBTTfdZI0aNcruMuAFS5YssVq1amUFBgZaV199tfX666/bXRK8JCsryxo1apTVqFEjKygoyGrWrJn15JNPWnl5eXaXhgq2evVqj7/jExMTLcuyrKKiImv8+PFWRESEFRgYaN1yyy3Wrl277C3asiy+BwAAAAAwCNcAAAAAAAYhAAAAAAAGIQAAAAAABiEAAAAAAAYhAAAAAAAGIQAAAAAABiEAAAAAAAYhAAAAAAAGIQAAAC7Yrl27FBkZqTNnzlTaGPfcc49eeumlSts+AJiGbwIGALjo2rWrYmNjNX369PP2veOOO9SuXTs9+eSTlVbP1q1b1aVLF+3bt0/h4eGVNg4AmIJPAAAAF+TgwYP69NNPdf/991fqOK1atVLz5s317rvvVuo4AGAKAgAAwOn+++/X2rVr9fLLL8vhcMjhcGj//v0e+/7jH/9QmzZt1KBBA2fbvHnzVKNGDX366adq0aKFQkJCdNdddyknJ0dvv/22mjRpopo1a+qRRx5RYWGhc73XXntNV155pYKCghQREaG77rrLZay+fftqwYIFlbLPAGAaP7sLAABUHS+//LK+//57tWrVSn/9618lSXXr1vXYd926dWrfvr1be05Ojl555RUtWLBAZ86c0R133KH+/furRo0aWrZsmfbu3as777xT8fHxGjBggDZt2qRHHnlE8+fPV+fOnXXy5EmtW7fOZZsdO3bUs88+q7y8PAUGBlb8jgOAQQgAAACn8PBwBQQEKCQkRJGRkaX2PXDggMcAUFBQoFmzZql58+aSpLvuukvz589XZmamqlevrpiYGHXr1k2rV6/WgAEDdPDgQVWrVk19+vRRaGioGjdurLZt27pss379+srPz1dGRoYaN25ccTsMAAbiFCAAwAX5+eefFRQU5NYeEhLiPPiXpIiICDVp0kTVq1d3aTt69KgkqUePHmrcuLGaNWumwYMH67333lNOTo7LNoODgyXJrR0AUH4EAADABalTp45++uknt3Z/f3+Xxw6Hw2NbUVGRJCk0NFRpaWn64IMPFBUVpQkTJqhNmzY6deqUs//JkycllXw6EgCg7AgAAAAXAQEBLhfolqRt27bavn17hYzp5+en7t27a+rUqfruu++0f/9+ff75587lW7duVcOGDVWnTp0KGQ8ATMY1AAAAF02aNNGGDRu0f/9+Va9eXbVq1ZKPj/vfixISEvTggw+qsLBQvr6+Fzzep59+qr1796pLly6qWbOmli1bpqKiIrVo0cLZZ926derZs+cFjwEA+B8+AQAAuHj00Ufl6+urmJgY1a1bVwcPHvTYr3fv3vLz89O///3vixqvRo0a+te//qWbb75ZLVu21OzZs/XBBx/ommuukSTl5uZq8eLFGjZs2EWNAwD4Bd8EDAC4YDNnztQnn3yiFStWVNoYs2bN0qJFi7Ry5cpKGwMATMIpQACAC/anP/1Jp06d0pkzZxQaGlopY/j7+2vGjBmVsm0AMBGfAAAAAAAG4RoAAAAAwCAEAAAAAMAgBAAAAADAIAQAAAAAwCAEAAAAAMAgBAAAAADAIAQAAAAAwCAEAAAAAMAgBAAAAADAIP8PN8wq6nqKzhkAAAAASUVORK5CYII=\n", "text/plain": "
" }, "metadata": {}, "output_type": "display_data" } ] } }, "870e13f4a75e406ba627ba8ac08a9038": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "8734ccc0a01243db948307e31a16b24b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "8f246b0ff40c43fda90b4d63fcec88a1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "94fcd68babab411794079de326d07d05": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ButtonModel", "state": { "description": "Sauvegarde", "layout": "IPY_MODEL_2c1eb4e9d8cc44b489ee8bb5ff0acb7f", "style": "IPY_MODEL_fedd3d5bf1e340b4b704d739318cfbc3", "tooltip": null } }, "95174e78d6ab4226abb135ab0612e1f8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "description_width": "" } }, "9e7f4fc27d184dccbf6688eb4a1f5fc3": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "layout": "IPY_MODEL_681824c7b1df4282ade8e5ff0e4fdbc5", "outputs": [ { "name": "stdout", "output_type": "stream", "text": "fichier mesures_us.csv créé\n" } ] } }, "b2078da3430144aabf186cd61251d874": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ButtonModel", "state": { "button_style": "success", "description": "Arduino", "icon": "check", "layout": "IPY_MODEL_8f246b0ff40c43fda90b4d63fcec88a1", "style": "IPY_MODEL_1a0540b31d7940e8b54e336518293dc9", "tooltip": null } }, "b56c9f55ffbf4d6295be2d0703acded5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ButtonStyleModel", "state": { "font_family": null, "font_size": null, "font_style": null, "font_variant": null, "font_weight": null, "text_color": null, "text_decoration": null } }, "b7846283cb184db484e4b728fbd5d986": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "children": [ "IPY_MODEL_b2078da3430144aabf186cd61251d874", "IPY_MODEL_e6d862b80eef46ebadb18dd0a9b46617", "IPY_MODEL_135f5a5ed6f34272a65016b0de3d282c", "IPY_MODEL_94fcd68babab411794079de326d07d05", "IPY_MODEL_06773149c4f247b0aa4884ca14c57f3e" ], "layout": "IPY_MODEL_8734ccc0a01243db948307e31a16b24b" } }, "dba15a52f7eb4a43ba012aa7f7dff7e6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "width": "200px" } }, "e6d862b80eef46ebadb18dd0a9b46617": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ButtonModel", "state": { "description": "Mesure", "layout": "IPY_MODEL_44508cb1f5954ea2ba3aba72ed853253", "style": "IPY_MODEL_b56c9f55ffbf4d6295be2d0703acded5", "tooltip": null } }, "fedd3d5bf1e340b4b704d739318cfbc3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ButtonStyleModel", "state": { "font_family": null, "font_size": null, "font_style": null, "font_variant": null, "font_weight": null, "text_color": null, "text_decoration": null } } }, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 5 }